

Professor Wilson Wong
Department of Computer Science

Professor Rodica Neamtu
 Department of Computer Science

This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of

a degree requirement. WPI routinely publishes these reports on its website without editorial or peer review. For

more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects

Ethan Pollack Axel Luca Harrison Taylor

ii

Abstract
This comparative study assesses three leading database systems: Oracle, Postgres, and

MySQL. The aim of this MQP was to create systematic selection criteria for college instructors to

assist them in choosing the most suitable database management system for teaching database

courses. As many industries rely on databases, the choice of appropriate database systems for the

curriculum is crucial to prepare students for real-world applications. Our methodology included

a thorough literature review of each system, practical evaluations via installations on multiple

operating systems, and syntactical analyses through hands-on projects. The results show unique

features of each system, with implications for how they fit within university curricula, depending

on course design and goals.

iii

Acknowledgments
We would like to thank our advisors Professor Wilson Wong and Professor Rodica Neamtu

for providing this project opportunity. Their support, insights, and guidance have been

instrumental in the success of this research. Additionally, we extend our appreciation to the WPI

Computer Science Department for teaching us a lot of topics that equipped us with the necessary

skills and knowledge to undertake this project. We would also like to thank all our friends at WPI

who have supported us all the way through our education. It would have been so much more

difficult without them. Lastly, we would like to acknowledge the unwavering support and

encouragement from our parents. They provided the foundation and motivation that allowed us

to get to where we are today. Without any of these support systems, none of this would be possible.

iv

Table of Contents

Abstract .. ii

Acknowledgments .. iii

Table of Contents ... iv

Table of Figures ... vii

1 Introduction ... 1

2 Background Research ... 2

2.1 What is a database? ...2

2.2 The importance of teaching about databases ..4

2.3 Pedagogical approaches to teaching Database Concepts ...4

2.4 Why Use a Relational Database? ..6

2.5 Background on Oracle ..7

2.6 Background on MySQL ...7

2.7 Background on Postgres ...8

2.8 Free web-based SQL editors for students and instructors ..9

3 Methodology ... 12

3.1 Project Methodology ... 12

3.2 Comparative Study .. 12
3.2.1 General Study .. 13
3.2.2 Academic Study ... 14

4 Results and Discussion ... 17

4.1 Installation Complexity .. 17
4.1.1 MySQL and Postgres .. 17
4.1.2 Oracle ... 17
4.1.3 Analysis and Discussion ... 17

4.2 Setup Complexity ... 18
4.2.1 Analysis and Discussion ... 19

4.3 Proprietary IDEs ... 19
4.3.1 Oracle ... 19
4.3.2 MySQL .. 20
4.3.3 Postgres ... 21
4.3.4 Analysis and Discussion ... 21

4.4 Cloud Pricing .. 22
4.4.1 Oracle ... 23
4.4.2 MySQL .. 23
4.4.3 Postgres ... 23
4.4.4 Analysis and Discussion ... 23

4.5 Datatypes .. 24

v

4.5.1 Numerical Datatypes ... 24
4.5.2 Date and Time Datatypes .. 25
4.5.3 String Datatypes... 26
4.5.4 Other Notable Datatypes ... 27

4.6 Table Management .. 28
4.6.1 Schema Used ... 28
4.6.2 Oracle ... 28
4.6.3 MySQL and Postgres .. 29
4.6.4 Analysis and Discussion ... 32

4.7 Data Manipulation ... 32

4.8 Query Simplicity .. 33

4.9 Advanced Functionality .. 33
4.9.1 Views .. 34
4.9.2 Procedures ... 34
4.9.3 Functions.. 37
4.9.4 Triggers .. 40
4.9.5 Advanced Functionality Analysis and Discussion ... 42

4.10 Java Database Connectivity (JDBC) ... 43
4.10.1 Schema Used ... 43
4.10.2 Driver Installation .. 43
4.10.3 Registering the Driver ... 44
4.10.4 Establishing a Connection ... 45
4.10.5 Analysis and Discussion ... 45

4.11 Connecting to the database using Python ... 46
4.11.1 Schema Used ... 46
4.11.2 Oracle .. 46
4.11.3 MySQL ... 48
4.11.4 Postgres ... 49
4.11.5 Analysis and Discussion ... 51

5 Future Works ... 52

6 Conclusion ... 53

7 Works Cited ... 54

8 Appendices .. 62

8.1 Appendix A: Oracle Installation for macOS through Docker ... 62

8.2 Appendix B: Using Oracle on macOS through Docker .. 66

8.3 Appendix C: Oracle Installation for Windows .. 68

8.4 Appendix D: Using Oracle on Windows ... 72

8.5 Appendix E: Postgres Installation for macOS ... 76

8.6 Appendix F: Using Postgres on macOS .. 78

8.7 Appendix G: Postgres Installation for Windows... 80

8.8 Appendix H: Using Postgres on Windows .. 84

vi

8.9 Appendix I: MySQL Installation for MacOS .. 88

8.10 Appendix J: Using MySQL on MacOS ... 90

8.11 Appendix K: MySQL Installation for Windows ... 94

8.12 Appendix L: Using MySQL on Windows ... 99

vii

Table of Figures
Figure 1: Example relational database schema for users, posts, and followers. 6
Figure 2: Postgres Statistics (Postgres, n.d.-a) 9
Figure 3: Schema used throughout the Table Management section. Note: Authors.email is a unique key.

Books.author_id is a foreign key with Authors.author_id. Reviews.book_id is a foreign key with
Books.book_id. 28

Figure 4: SQL Code to create an Authors table in OracleSQL. 28
Figure 5: SQL Code to drop the table named Reviews in OracleSQL. 29
Figure 6: SQL Code demonstrating how in MySQL, users can use either the ENUM syntax or the CHECK syntax to

limit specific values in a table. 30
Figure 7: SQL Code demonstrating how in PostgreSQL, users can either use a custom defined ENUM type or the

CHECK syntax to limit specific values in a table. 30
Figure 8: Valid Table Creation in MySQL and PostgreSQL. Uses ON UPDATE CASCADE. 31
Figure 9: Valid Table Creation in MySQL and PostgreSQL. Uses ON UPDATE SET NULL. 31
Figure 10: The 'IF EXISTS' option that can be used in MySQL and PostgreSQL to drop the 'Reviews' table if it

already exists. 32
Figure 11: Example query that is valid in OracleSQL, PostgreSQL, and MySQL. 33
Figure 12: Schema used throughout the procedures section. Note: Employee.locationID is a foreign key with

Location.locationID. 34
Figure 13: A procedure defined in OracleSQL used to print out information about an employee's location based

on their name. 34
Figure 14: A procedure defined in PostgreSQL used to print out information about an employee's location based

on their name. 35
Figure 15: A procedure defined in MySQL used to print out information about an employee's location based on

their name. 36
Figure 16: Schema used throughout the functions section. Note: MedicalEquipment.locationID is a foreign key

with Location.locationID. 37
Figure 17: A function defined in OracleSQL to get the equipment count based on a location's short name. 37
Figure 18: A function defined in PostgreSQL to get the equipment count based on a location's short name. 38
Figure 19: A function defined in MySQL to get the equipment count based on a location's short name. 38
Figure 20: Schema used throughout the triggers section. Note: TransportRequest.itemID is a foreign key with

MedicalEquipment.itemID. 40
Figure 21: A trigger defined in OracleSQL that errors when specific equipment types are inserted into the

TransportRequest table. 40
Figure 22: A trigger defined in PostgreSQL that errors when specific equipment types are inserted into the

TransportRequest table. 41
Figure 23: A trigger defined in MySQL that errors when specific equipment types are inserted into the

TransportRequest table. 41
Figure 24: Schema used throughout the JDBC section. 43
Figure 25: OracleSQL Driver downloads page. Note: the first two .JAR files are typically the correct downloads for

an introduction course. 44
Figure 26: MySQL Driver downloads page. 44
Figure 27: Postgres Driver downloads page. Note: the orange 'Download' buttons will download the .JAR file. 44
Figure 28: Java code for locating the Oracle Driver. 45
Figure 29: Java code for locating MySQL Driver. 45
Figure 30: Java code for locating Postgres Driver. 45
Figure 31: Java code to open an Oracle driver connection. Note: <Driver>, <Host Name>, <Port>, <SID>, <User

ID>, and <Password> should be replaced with the type of driver, the host name, the port number, the SID
of the SQL server, the user ID, and the password respectively. 45

Figure 32: Java code to open a MySQL driver connection. Note: <Host Name>, <Port>, <Database Name>, <User
ID>, and <Password> should be replaced with the host name, the port number, the database name, the
user ID, and the password respectively. 45

viii

Figure 33: Java code to open a Postgres driver connection. Note: <Host Name>, <Port>, <Database Name>, <User
ID>, and <Password> should be replaced with the host name, the port number, the database name, the
user ID, and the password respectively. 45

Figure 34: Schema used for the Python Connection section. 46
Figure 35: Terminal command to install the library that allows Python to connect to Oracle. 46
Figure 36: Line of code in a Python project to import the cx_Oracle library. 46
Figure 37:.ZIP format available for the Oracle Instant Client. 47
Figure 38: Python code to initialize the Oracle client. Note: '/path/to' should be replaced with the appropriate

file location of the Oracle Instant Client. 47
Figure 39: Python code that sets up an Oracle connection with a user ID, password, and a DNS. Note: The DNS

should be formatted as "<host name>:<port>/<SID>". 47
Figure 40: Python code that creates a prepared statement which allows SQL queries to be executed in Oracle.

Note: the ‘:1’ and ‘:2’ are placeholders for the <Insert Password> and <Insert Employee ID>. 48
Figure 41: Terminal command to install the library that allows Python to connect to MySQL. 48
Figure 42: Line of code in a Python project to import the mysql.connector library. 48
Figure 43: Python code that sets up a MySQL connection with a user ID, password, host, port, and database

name. 49
Figure 44: Python code that creates a prepared statement which allows SQL queries to be executed in MySQL.

Note: the ‘%s’s are placeholders for the <Insert Password> and <Insert Employee ID>. 49
Figure 45: Terminal command to install the library that allows Python to connect to Postgres. 50
Figure 46: Line of code in a Python project to import the psycopg2 library. 50
Figure 47: Python code that sets up a Postgres connection with a database name, host, and port. 50
Figure 48: Python code that creates a prepared statement which allows SQL queries to be executed in Postgres.

Note: the ‘%s’s are placeholders for the <Insert Password> and <Insert Employee ID>. 50
Figure 49: Summary of comparisons across Oracle, Postgres, and MySQL 53

1

1 Introduction
A known impact that the creation of the internet had on society was that it allowed a

tremendous amount of data on almost any topic to be accessed, obtained, and stored (Firth et al.,

2019). From e-commerce websites to offline sudoku apps, most applications need to create and

manipulate data for the benefit of the end-users. For simpler applications that do not have a lot a

data and may not be concerned with high-end security, storing data as raw text files on device is

not problematic and may suffice. However, as data storage requirements increase and larger

applications need increased security, databases provide the most efficient solution.

A database management system (DBMS) is needed to effectively maintain a database. A

DBMS references an entire ecosystem of software that is used to create, host, and interact with a

database. For instance, before running the database, several steps must occur: (1) a server must be

downloaded and hosted, (2) users must be created with permissions, (3) the user must log in and

create the framework to store data. After completing these steps, the client can then store data in

the database. This process can be very complex, which has resulted in companies creating

proprietary DBMS so that server administrators can easily create, host, and interact with their

database. Despite this, as of 2023, the most popular type of database being used in general is still

the relational database, with Oracle now having been the leader for over 10 years (DB-Engines,

2019; DB-Engines, 2023).

In this project, we explore three relational database management systems (DBMS): Oracle,

MySQL, and Postgres. Each DBMS has their proprietary Structured Query Language (SQL) to

interact with the respective database. Although they all use the same relational guidelines, the

specific implementation differs enough to provide noticeable benefits and deficits in a variety of

factors including availability, cost effectiveness, ease of use, performance of key functions, etc. The

objective of this research is to generate criteria to assist college instructors in deciding the most

appropriate system for their database courses. To accomplish this goal, we conducted an in-depth

review of each system, practical evaluations via installations on multiple operating systems, and

syntactical analyses through hands-on projects.

With database instruction in academia becoming an increasingly important aspect of

computer science, it is essential that professors are aware of the variety of tools at their disposal

(Motro, 1993). To this end, highlighting the drawbacks and benefits of each relational database

provides professors with critical information to guide them in choosing the best database for their

course. In addition, this project provides students with better materials to facilitate access to

database technology to help them learn the fundamentals and apply what they have learned in the

real-world.

2

2 Background Research
For this MQP report, the Background research addresses multiple aspects of working with

databases. These aspects include the importance of teaching about the topic of databases along

with some of the pedagogical approaches universities use to do so, reasons why one would choose

a relational database as their type of database to use, and some background on the three databases

that are being compared for this project. After all of this, the Background research concludes with

a section about what are some free web-based SQL editors that students and instructors can use

while getting all their database course materials ready.

2.1 What is a database?
 In general, a n organized collection of structured information, or

relational databases, object-oriented databases, distributed databases, data warehouses, NoSQL

databases, graph databases, open-source databases, cloud databases, multi-model databases,

document/JSON databases, autonomous databases, and hierarchical databases. Each of these

databases have similarities and differences in the way they store and handle data, as well as

functions and capabilities that are beneficial for specific projects (Oracle, 2022).

Relational databases, which became dominant in the 1980s, organize items in tables with

rows and columns, offering the most efficient way to access structured data (Oracle, 2022).

Additionally, these databases improve productivity because they offer data independence,

structural simplicity, and relational processing (Codd, 1982).

Object-oriented databases represent information as objects, drawing inspiration from the

structure in object-oriented programming (Oracle, 2022). They are designed to store and manage

complex data objects mirroring those in object-oriented programming languages. These databases

ensure object data persistence, allowing stored objects with their properties to persist even after

program termination, offering a transparent process for storing and retrieving these complex

objects (MongoDB, n.d.-a).

Distributed databases comprise files spread across multiple sites and may exist on

numerous computers in varied locations, either locally or over diverse networks (Oracle, 2022).

Some key features that these databases provide include transparent management of distributed and

replicated data, reliable access to data through distributed transactions, improved performance,

and easier system expansion (Özsu et al., 1999).

Data warehouses act as central data repositories and are specialized databases optimized

for swift query and analysis tasks (Oracle, 2022). In addition to this, these databases are optimized

for retrieving data through multidimensional queries, which allows companies to make important

decisions for their business, and ultimately increase their profits (Haxhiu, 2018).

3

NoSQL databases, also known as "not only SQL", utilize storage designs that differ from the

traditional relational tables. Depending on their data model, NoSQL databases can be categorized

into primary types like document, key-value, wide-column, and graph. These databases offer

adaptable schemas and are adept at handling vast data quantities and significant user traffic

(MongoDB, 2019).

Graph databases uniquely represent data by focusing on entities and their

interrelationships (Oracle, 2022). Graph databases can utilize native storage specifically designed

for managing graphs or rely on relational or object-oriented databases, with the former often being

faster. Native graph processing, or "index-free adjacency", efficiently processes data as connected

nodes physically reference each other, unlike non-native engines which use alternate methods for

Create, Read, Update, and Delete operations. An example of such databases would be Twitter, a

graph database that connects over 300 million monthly active users (Sasaki et al., 2018). A subset

of graph databases is online transaction processing databases, which are designed to efficiently

handle a vast volume of transactions from multiple users (Oracle, 2022). Online Transaction

Processing is a type of data processing activity that handles multiple simultaneous transactions,

such as online banking, shopping, order placements, or text messaging. Traditionally, these

activities are viewed as financial or economic transactions and are documented and safeguarded

to ensure businesses can retrieve the data for accounting or reporting needs (Oracle, 2020).

Open-source databases come with open-source code and can encompass both SQL and

NoSQL types (Oracle, 2022). Today, open-source databases now support a vast array of modern

applications, ranging from popular mobile applications to leading eCommerce platforms.

Examples of such databases include MySQL, Postgres, MongoDB, and Redis (Amazon Web

Services, n.d.).

Cloud databases store data on cloud platforms and can either be traditional or function as

a Database as a Service (DBaaS), with the latter having a service provider overseeing administration

and maintenance (Oracle, 2022).

Multi-model databases stand out by integrating various database models, allowing them to

cater to a range of data types such as relations, documents, graphs, and objects within a unified

management system (Oracle, 2022

Document/JSON databases are tailored for document-oriented tasks and modernly save

data in JSON format instead of conventional rows and columns (Oracle, 2022). These databases

offer flexibility in storing various types of data and easily accommodate changes in a data model

(MongoDB, n.d.-b).

4

Self-driving or autonomous databases are revolutionary in design; being cloud-oriented,

they utilize machine learning to automate numerous database management tasks, minimizing

manual administrative intervention (Oracle, 2022).

Hierarchical databases, among the earliest database types, structure data in a tree-like

model where each record has a singular "parent." This parent-child relationship is represented

using pointers, with tables branching out from a central 'root'. A tree-structure diagram resembles

a data-structure diagram found in a network model. While the network model arranges records in

the layout of a random graph, the tree-structure diagram organizes them in the pattern of a rooted

tree (Domdouzis et al., 2021).

2.2 The importance of teaching about databases
The topic of databases has now been a part of a core curriculum in computer science for

multiple decades. Because of this, in universities, there are courses available at both introductory

and advanced levels that teach about a variety of subtopics that relate to Databases. Examples of

these subtopics are data modeling and design, query optimization, ER diagrams, views, triggers,

procedures, functions, and relational algebra. To teach about these subtopics, commonly used

database systems include MySQL, Oracle, Postgres, and even NoSQL (Aggarwal et al., 2020; Bi &

Beidler, 2008; Fekete & Röhm, 2022.; Jiang & Nandi, 2015; Udoh, 2006; Fekete, 2005).

There are numerous reasons why teaching the topic of databases is very important in

computer science education. One key reason is that technology companies create an increasing

number of digital applications that rely on database systems to store data. Example types of such

web-based applications include online encyclopedias, social media websites, CRM systems, e-

commerce websites, and email systems (MongoDB, n.d.-c). Another important reason for which

teaching the topic of databases in a computer science education is important is that the types of

industry employing CS graduates may rely on databases for what they need to do even though they

do not relate primarily relate to technology. Some examples of such types of industry include

commercial, social activities and scientific (Deng et al., 2004). Because of this, no matter the type

of industry, having computer science employees that handle data management is essential (Bi &

Beidler, 2008). This leads to companies of various types of industry offering various types of

positions that require knowledge of databases such as software developers, database

administrators, and data analysts (Fekete & Röhm, 2022). Therefore, it is essential for any

university that offers a computer science curriculum to give students a solid database system

foundation so that they can learn all the skills that they will need in order to be eligible to fill up

these kinds of positions (Huang, 2019).

2.3 Pedagogical approaches to teaching Database Concepts
Because not all university curricula will approach the topic of databases depending on what

their learning objectives are, different classes at different colleges will use different methods to

teach it (Aggarwal et al., 2020; Fekete & Röhm, 2022; Mior, 2023). Some universities focus more

5

on teaching database concepts while others focus more on giving students realistic hands-on

experience to prepare them for working in the industry after graduating from college.

One of these methods that some universities implement is the use of visual software to help

students understand specific subtopics related to databases better. An example of a university that

used this method to help its students understand specific subtopics related to databases better is

Ohio State University. To help its students understand the topic of relational algebra, the Ohio

State University developed an interactive textbook with features such as being able to connect to a

live database and giving users the ability to explore the projection operation by tapping on

attributes of a relation, and completely rewriting relational algebraic expressions (Jiang & Nandi,

2015).

Another method some universities such as the University of Wisconsin - Eau Claire, the

Macalester College, and the University of Minnesota use to teach the topic of databases is using

actual scientific datasets in their course assignments. There are multiple benefits to using this

method to teach the topic of databases to students. These include the fact that scientific datasets

help students learn to model and work with complex data, which prepares them for future

employment in database systems, and that they help students gain an understanding of

interdisciplinary work, which can be developed through communication with professionals in the

relevant field (Wagner et al., 2003).

One more common method used by universities to teach the topic of databases to students

is having students work on large-scale team projects where they can apply all the skills that they

learn in class regarding the topic of databases. Universities that use this method include Purdue

University and Wentworth Institute of Technology (Rilett & Russo, 2013). As a first example of

such projects, in its introductory database course, Purdue University required its students to

-server (two-tier) architecture, with a client application like Oracle

(Udoh, 2006). Another

example of those projects that is worth mentioning is one that was conducted in an introductory

database course at Wentworth Institute of Technology. For this project, students initially designed

 store information such as a shopping cart

or payment information. The database itself was initially hosted on AWS using an instance

running MySQL. Towards the end of the course, the students migrated their databases to the

Relational Data Service (RDS) provided by Amazon and used that to set up a virtual web server on

several instances with S3 storage for all static content. Students also deployed an elastic load

(Rilett & Russo, 2013).

A similar teaching method to this that also applies to teaching database concepts is

Worcester Polytechnique Institute signature project-based learning approach used since 1970.

With this method, students engage in completing projects that let them use what they have learned

in class to solve real-world problems. Students work on these projects either in their own town or

6

in other parts of the world, collaborating in groups or working alone with guidance from teachers.

Through these projects, students hone their critical thinking, research, speaking, and writing skills,

which allows them to be better equipped for their post-graduation careers (Center for Project

Based Learning» Project-Based Learning at WPI, n.d.; Project-Based Learning at WPI | PBL in

Higher Education, n.d.).

2.4 Why Use a Relational Database?

Despite the large variety of major subsets of databases that exist, such as the types discussed

earlier, relational databases have been widely used in both industry and academic database course

settings for decades (Dolezel & McLeod, 2021). Relational database technology offers productivity

improvements due to data independence, structural simplicity, and relational processing (Codd,

1982). A relational database is a kind of database that organizes data into tables where each row

represents a unique record identified by a key. Based on the relational model, it uses columns to

define data attributes, allowing for straightforward representation and easy linkage of related data

points through their values (Oracle, 2023). Each table will have a set of rows where each row

represents a different record. We can then set up a relation between two of these tables across

common rows, such as an id or a name. When manipulating data in the database, a user provides

values for each of these rows, where each row constitutes one record for that table. For example,

in Figure 1 one would need to add the id, username, role, and created_at values for each new user

that one would want to store.

Figure 1: Example relational database schema for users, posts, and followers.

Using a Structured Query Language (SQL), a database developer can interact with their

database in multiple ways. SQL supports a multitude of keywords that allow users to add, get, and

remove data from any of the tables in the database. In addition to this, SQL has a very structured

method of combining tables using the predefined relations on the tables. For example, in Figure 1,

a user can search for all has an efficient method of

filtering and ordering results. This means that users can perform complex searches. For example,

one can search for all users that have between 3 and 24 posts, and the database will return all

7

appropriate records. The combination of the structured table and relation setup and the SQL

queries allow for a robust, secure, fast, effective, and usable database system (Codd, 1982).

2.5 Background on Oracle
Oracle is a company that provides tools for developers in various ways, including Cloud

Computing, Customer Relationship Management (CRM), Docker, Kubernetes, and Python. One

of the tools within the Cloud Computing category is the Oracle Database. The Oracle Database is

a Relational Database Management System (RDBMS). Starting in 1979 with Oracle v2, every few

years, or when new features are required, Oracle releases a new version of their database. As of

2023, when this paper was written, Oracle Database 21c is the current version with a very large

number of features, efficiency upgrades, and industry breaking implementations (Oracle, n.d. -c).

As a result, Oracle Database 21c is the version of the system that we used to conduct our research

for this paper.

There are a few editions of Oracle Database available for these versions: Oracle

Autonomous Database, Oracle Database Enterprise Edition, and Oracle Database Free. Oracle

Cloud Infrastructure (OCI) is a product that allows one to host a variety of Oracle

servers anonymously. The Oracle Anonymous Database utilizes Oracle Cloud to handle all aspects

of hosting, storing, and maintaining the servers that run a database. Although there is a free tier

for this cloud version, past a certain threshold the cost goes up with the amount of data that one

consumes (Oracle, n.d.-a).

Although only one of the Oracle Database Enterprise Edition and Oracle Database Free has

both can be downloaded and run for free at any point (Oracle, n.d.-b). The

difference is that the enterprise edition is aiming to support large companies or projects while the

free tier is more suitable for smaller applications. Both require the server administrator to maintain

their own server to host the database. Setting up and maintaining the hardware and software

required can be very time consuming and expensive, which is why in recent years cloud computing

has become increasingly popular. However, for the purpose of this research paper, hosting the

servers locally will allow us to compare the various DMBSs more effectively.

2.6 Background on MySQL
MySQL is an open-source relational database system, that is used for popular applications

such as Facebook, Twitter, Netflix, Uber, Airbnb, and more. Since MySQL is open source, it is

under continuous development by a large number of users who lend their expertise to MySQL with

the collective goal of improving the system (MySQL, n.d.-b). MySQL originated from Scandinavia

in 1979, who worked for the Swedish company TcX.

MySQL includes an SQL server, client programs for accessing the server, administrative tools, and

a programming interface for writing new programs. Initially MySQL took off due to its speed and

simplicity, however it lacked certain features such as transactions and foreign key support. Since

8

then, developers have added those features and others such as replication, subqueries, stored

procedures, views, and triggers (DuBois, 2009).

One key benefit of MySQL is its reliability, as it has been tested in a wide variety of scenarios

and is used in large companies as it can handle complex databases with billions of rows (DuBois,

2009; MySQL, n.d.-b). Additionally, MySQL is easy to install and manage, and it can be easily

scaled to meet the demands of users and companies. MySQL has also been proven to be faster and

less expensive than other database services based on the industry benchmarks of TPC-H, TPC-DS,

and CH-benCHmark. This database also allows developers to develop both SQL and NoSQL

schema-free database applications, while also mixing relational data and JSON documents.

Another benefit of MySQL is that it is multi-threated, meaning that multiple clients can connect

to it at the same time and a client can use multiple databases simultaneously (MySQL, n.d.-b).

MySQL incorporates features to support the needs of an ever-growing industry. One new

product includes MySQL HeatWave which is a fully managed database service for transactions,

real-time analytics, and machine learning services. HeatWave is available on OCI, AWS, and

Azure, and is known for its simple structure and low cost for ETL duplication. Another product is

MySQL Enterprise Edition which has the most features of any MySQL product including MySQL

Enterprise Transparent Data Encryption (TDE), MySQL Enter preside Masking and De-

identification, MySQL Enterprise Backup, MySQL Enterprise Authentication, and more. These

features make MySQL Enterprise Edition the most scalable, secure, and reliable MySQL product.

MySQL has also produced MySQL for OEM/ISV which has allowed over 2000 ISVs, OEMs, and

VARs to implement MySQL. Finally, MySQL produced MySQL Cluster which allows users to meet

the database challenges of cloud and communications services while also allowing it to scale

(MySQL, n.d.-a).

Since MySQL is open source, their products are free to download, setup, and maintain.

This includes MySQL Server, MySQL Workbench, and other tools needed to operate MySQL on

devices. Like users begin hosting their servers, they

will be charged for the data used. There are a variety of plans that depend on the specific types and

quantities of data that they are storing. For smaller projects the free downloads for MySQL are a

perfect way to start developing a very professional and robust server and database.

2.7 Background on Postgres
Like MySQL, Postgres is an open-source relational database system. This RDBMS has been

in development for around 35 years (Postgres, n.d.-c). Originally named POSTGRES, this database

system has a multitude of features other relational database systems do not offer, making it worth

considering whenever choosing a database system (Postgres, n.d.-c; Lerner, 2007). From unique

implementations of custom data types to stored procedures, Postgres is a viable and completely

free alternative to paid DBMSs. Postgres is available on all major platforms including Windows,

9

macOS, Linux, and more (Postgres, n.d.-b). On top of this, there are numerous older versions that

are still available for download for free (Postgres, n.d.-d, n.d.-c).

All database systems that incorporate SQL will contain numeric, text, and date/time

datatypes included with all versions. However, PostgreSQL also implements other important

features such as custom datatypes and composite datatypes. These allow users to store complex

and custom data related to their project. This can be useful to help with the efficiency loss of

splitting up all data into their atomic datatypes. On top of this, there is support for geometrical

datatypes: point, line, circle, and polygon (PostgreSQL, n.d.-a).

Like MySQL Workbench, pgAdmin is an integrated development environment (IDE) for

Postgres (pgAdmin, n.d.-a). This is a robust open-source tool that is used to interact with Postgres

Servers. Included is a great query editor made for PostgreSQL, statistics visualizations of

data, file explorers, and much more to ease the development process. The current version is

pgAdmin 4, and this can be installed in a variety of ways including Windows, macOS, Linux,

Docker, and more (pgAdmin, n.d.-b).

Figure 2: Postgres Statistics (Postgres, n.d.-a)

2.8 Free web-based SQL editors for students and instructors
When teaching any course in general, it is possible that not every student will have all the

appropriate tools set up right on the first day of class, and that includes the database

server(s)/client(s) that students are required to have to be able to complete an introductory

database course. Fortunately, there are multiple ways for students to get access to SQL languages

such as OracleSQL, MySQL, and PostgreSQL for free without having to download any software on

their computers. However, even though these editors support a lot of key SQL functions such as

creating functions and inserting statements, it is expected that students will eventually acquire all

the database tools that they need to complete the database course(s).

If a database course uses OracleSQL as the SQL language, then an example of a free web-

based SQL editor that one can use is called Oracle Live SQL. This free SQL editor version supports

many SQL capabilities/operators such as creating tables, inserting data, triggers, and procedures.

An additional benefit to this free SQL editor version is that there is no limit to the number of lines

of code that one can type and run individually by highlighting them. Despite all the SQL

capabilities/operators that Oracle LiveSQL supports, it does have its drawbacks. To begin, one will

10

not be able to use Oracle Live SQL until they create an Oracle account. In addition to this, if one

tries to run more than approximately 375 lines of code at once by highlighting them, the software

will not run those highlighted lines of code at all.

If a database course uses MySQL as the SQL language, then an example of a free web-based

SQL editor that one can use is called phpMyAdmin. To begin using this service, one will first need

to register by entering an email address that use on a free service called Free SQL Server. Once that

is done, the newly registered user will receive an email with a link that will allow them to create

their password to finalize their account for the service. Once the new user has their account

finalized, they will be required to enter all their account details to log in for good and be able to

fully utilize this service. Once logged in, the user simply must

in order to be directed to a page where they will need to put in the last bits of information required

such as the server location to obtain their free database consisting of 5 megabytes of available space.

Once all the required information has been filled in and saved, the user will receive an email

consisting of all the information of their newly created database including the database server

name, username, password, and

phpMyAdmin website and enter all their obtained database information to use the free SQL editor.

Despite all the steps required to access this SQL editor, phpMyAdmin does have a lot of useful

features that both students and instructors can use. One of these features is an SQL webpage that

students and instructors can use to perform basic SQL tasks such as creating and deleting tables,

inserting data into them, and then querying them. Another use of this SQL editor is

tab that students and instructors can go to manually manipulate their tables by doing things such

as dropping them, browsing the data inside them, a , and empty

them. Other features that this SQL editor provides are the ability for users to both import data

from an input file, to export data from their tables into a file, to manually query their database

without any SQL code, and to see a visual representation of how their created tables are related to

each other.

If a database course uses PostgreSQL as the SQL language, then an example of a free web-

based SQL editor that one can use is CoderPad. Even before a user signs up, they will have access

to an SQL IDE that is divided into 2 parts. The left part of the IDE is where a user will be able to

write PostgreSQL code perform basic SQL tasks like editing the already provided code, creating

and deleting tables, inserting data, and querying their database. On the right side of the provided

IDE, the user will have 3 different tabs. The first one gives out a set of instructions to solve a sample

PostgreSQL interview problem, the second one lets the user see the output of their program when

they run their code, and the third one gives them a visual representation of how their created

database tables are related to each other. Although this should not be an issue to either students or

instructors for the early days of the database course, it should be noted that this free SQL editor

runs PostgreSQL 12.4. This means that they will not have access to the newest Postgres features

and capabilities introduced in its later versions.

11

If one is looking for a free web-based SQL editor that supports more than one SQL

language, those exist as well. A first example of these free SQL editors is called SQL fiddle

(Fadlallah, 2021). SQL Fiddle is an online SQL editor that allows database developers to create,

run, and share SQL queries and schemas. Developed in 2012 by Jake Feasel, this web-based SQL

editor helps users build representative databases for troubleshooting, comparing SQL statements

across different database back-ends, and testing queries in environments they may not have readily

available (Feasel, 2012). Although SQL fiddle supports OracleSQL, MySQL and PostgreSQL, it

only supports old versions of those languages such as MySQL 5.6 and Oracle 11g. Therefore, if one

uses SQL fiddle, they will not have full access to all the SQL capabilities/operators that they will if

they use a more modern version of those SQL languages such as Oracle Database 21c. Another

option that one can use if they are looking for a free SQL editor if the course uses either MySQL or

PostgreSQL as the SQL language is called db-fiddle. Unlike SQL fiddle, db-fiddle supports modern

versions of its SQL language options such as MySQL 8.0 and PostgreSQL 15, meaning that a user

will have access to a more complete set of SQL capabilities/operators that SQL fiddle does not

support (DB-fiddle, n.d.). One of the best free SQL editors that students can use is called

db<>fiddle (Fadlallah, 2021). This web-based SQL editor was originally designed to be used for

friendly markdown-based Q&A sites like Stack Overflow, TopAnswers and Codidact

readable for longer, multi-step, code Just like db-fiddle, db<>fiddle supports modern versions

of its SQL language options such as MySQL 8.0 and PostgreSQL 15. However, db<>fiddle gives a

user many more options to choose from in terms of SQL languages than db-fiddle. This is because

in addition to the SQL languages that db-fiddle already supports, db<>fiddle supports other

modern versions such as Oracle 23c, TimescaleDB 2.11, and Firebird 4.0 (DB<>Fiddle, n.d.).

Despite all its benefits, db<>fiddle only lets a user create one SQL command per block. This can

be very inconvenient if they are trying to copy and paste in large datasets in the form of SQL insert

statements into this SQL editor. Luckily, it turns out that one way a user can get around this issue

is to take advantage of the fact that modern versions of SQL languages let the user put multiple

rows of data to insert in a table into a single SQL insert statement (Fadlallah, 2021). The only catch

is that to use this workaround, the user needs to make sure that they are using the most up-to-date

version available of their language of choice on this SQL editor. An example of such would be

Oracle 23c, the most up-to-date version of Oracle available on db<>fiddle.

12

3 Methodology
3.1 Project Methodology

We utilized a well-known and efficient methodology for project management and

development to efficiently manage and keep track of our tasks and workload.

Agile was the primary workflow style we used while gathering our research and keeping

ourselves on track. Through a software design methodology, Agile proved to be very effective in

the organization of tasks, subtasks, and research flow, even for our more research-oriented project.

It allowed iterative versions of our research that

progression of our work.

An integral part of our usage of Agile is the project management software JIRA. JIRA

captures user stories and objectives and tracks the progress of each issue and shows each user their

specific issues during the development cycle(Sarkan et al., 2011). Utilizing this software, it was easy

and simple to keep track of our objectives. Each time we generated a new user story or task, we

were able to generate a task for it in our JIRA board swiftly and assign it to whoever was ready for

it, or simply left it there until we discussed it later.

Our team met 3-4 times a week for a Scrum, which is a short meeting in Agile methodology,

where we discuss what we have accomplished since our last meeting, and what we would ideally

have done for the next meeting (Srivastava et al., 2017). As such, scrums allowed us to quickly

resolve issues that would arise from disagreements or misunderstandings by constantly reviewing

and sharing our progress and goals. The scrum is also where we would update our user stories,

moving them around as we saw fit, to have our JIRA board as updated as possible.

Once a week we had a sprint, which is an integral part of the Agile Scrum methodology, in

which we reviewed the goals we had set for ourselves over the past week, and discussed what we

had accomplished, and what we still had to do (Hidalgo, 2019). Each of our sprints began with a

sprint planning meeting where we set out our project objectives for the week. At the end of each

of these sprints, we conducted a review meeting with our project advisors to present what was

accomplished in relation to the outlined project objectives. This meeting was followed by a

retrospective meeting to reflect on how closely our accomplishments aligned with those objectives.

Sprint is where the overarching goals and user stories of the project are defined and is where most

tasks are added to our JIRA board. It allows us an in-

also offering a comprehensive outline of our work for the coming week.

3.2 Comparative Study
For this project, we used Oracle Database 21c, PostgreSQL 15, and MySQL 8.0.33 to

ensure that our results and conclusions were based on the latest versions of each system available

at the time of our research.

13

3.2.1 General Study

When generally comparing which database systems database systems it is important to

consider a variety of factors. These factors include:

• Installation Complexity

• Setup Complexity

• Proprietary Integrated Development Environments (IDEs)

• Cloud Pricing

• Datatypes

3.2.1.1 Installation Complexity

This criterion focused on the installation of local databases and their respective integrated

development environments. Ideally, the installation of the required software is simple and easily

manageable. This allows students of any experience level to begin to study relational databases

without worrying about initial issues when simply setting up their software. Things such as

installing, updating, setting up, learning, and running programming tools can be unnecessary

burdens to students (Qiu et al., 2017). This comparison will primarily focus on ease of installation

of the three SQL technologies. Any notable problems in the installation or frequent problems

associated with the downloading of local databases and their respective IDEs will be considered,

such as glitches, frequent errors, and notable complications. Any issues associated with specific

operating systems will also be noted, as this process should be as simple as possible for all

computers that would be using these technologies.

3.2.1.2 Setup Complexity

Similar to installation complexity, this criterion focused on the difficulty of setting up user

roles and databases themselves on a local or online server system. Once again, ideally this is simple

and should just mean following a set of instructions. As mentioned above, things such as installing,

updating, setting up, learning, and running programming tools can be unnecessary burden to

students (Qiu et al., 2017). The setup of databases and users should be easy, swift, and simple across

all popular operating systems, such as Windows, MacOS, and Linux. This will be evaluated in areas

such as ease of access to a SQL console, number of configuration commands, simplicity of syntax,

reliability of setup methods, change between operating systems or computer types, and so on.

3.2.1.3 Proprietary Integrated Development Environments (IDEs)

To identify the strengths and weaknesses of proprietary Integrated

Development Environments (IDEs), we examined specific features supported by each IDE, as well

as gauged how simple it is for users to access and use those features. While modern IDEs with lots

features are too complex to access and use, it

their tasks (Zayour & Hajjdiab, 2013).

14

3.2.1.4 Cloud Pricing

Cloud pricing was an important factor to investigate for our three database systems. This

is because in general, good cloud pricing models help in making users buy the cloud services to be

able to use them (Al-Roomi et al., 2013). We investigated and conducted the comparison of this

aspect for each of these three database systems by researching it.

3.2.1.5 Datatypes

Datatypes are the forms in which any given data is stored in a database. Examples of such

datatypes include INTEGER or VARCHAR when storing numbers or strings respectively (Melton,

1996). Advanced data types can be incredibly useful for the purpose of efficient data storage, and

many languages have a wide variety to choose from. While this is useful in many applications,

unfortunately, some languages may utilize datatypes that are less intuitive than others. We weighed

the primary datatypes of each popular SQL language to gauge both how useful they are and how

intuitive they are.

3.2.2 Academic Study

The criteria outlined in the Academic Study section are significantly more academically

centered. These are integral to the classroom experience while learning SQL, and more specific

than the General Study. Many of the criteria focus on simplicity and ease of access for students

attempting to learn relational database concepts. Using a syntactically simple language instead of

a

more streamlined experience (Koulouri et al., 2014). For this reason, many of the criteria focus on

the simplicity of the SQL languages being evaluated. For each of the criteria, we utilized hands on

projects to fully explore and identify the major similarities and differences between the three SQL

languages. These criteria are:

• Table Management

• Data Manipulation

• Query Simplicity

• Advanced Functionality

• Java Database Connectivity (JDBC)

• Python Database Connectivity

3.2.2.1 Table Management

The creation and deletion of tables are fundamental when comparing SQL languages. The

table is one of the most important concepts in relational databases, as it serves as the structure of

data storage, so an SQL language should make it as easy and intuitive as possible to create, edit,

and delete tables. In addition, table constraints, which are limitations placed on the table, should

be handled easily and intuitively. All of this is important because when students work on projects

that rely on databases, creating tables can have roles in the project that are crucial to its

15

functionality (Gallini et al., 2022). We investigated the creation, updating, and deletion of tables

and constraints in all three SQL languages, and evaluated them against each other.

3.2.2.2 Data Manipulation

In this criterion, we investigated the simplicity of performing basic SQL operations such as

retrieving, inserting, altering, and deleting records in tables. In a course that involves the use of

databases, students are expected to master such SQL data manipulation operations so that they can

apply them to more advanced computer science topics such as web programming (Maiorana,

2014). Once our projects have been completed, we analyzed all the syntactical differences that these

operations have presented across the three .

3.2.2.3 Query Simplicity

Querying a relational database means extracting data from it in a specific way to get the

data desired by the users. Querying is entirely based on pre-established logic which will remain

consistent regardless of language, meaning ideally the SQL language would make it as easy as

possible to translate logic mapping into SQL code (Eder, 1992). We intended to find the querying

system that aligns most intuitively with the logic behind it, as it will likely represent one of the best

choices for students who are learning relational database concepts.

3.2.2.4 Advanced Functionality

Views, triggers, functions, and procedures are some of the more advanced concepts taught

in an introductory database systems course. Triggers are functions that can perform an action

when values are inserted or removed to a given table, and functions and procedures act similarly

to how they do in other coding languages, executing a block of code when called (Ceri et al., n.d.).

Even so, it is important to note that functions and procedures are not part of the universal SQL

standard and are specific additions to SQL dialects. Like other language criteria, these should be

easily conceptualized and learned by students. They should be formatted in a way that allows the

ideas behind them to be easily understood as overly complicated syntax could have a negative

impact on the overall learning experience. We gauged functionality by testing to see if

some languages have triggers, functions, or procedures that are capable of features that other

languages do not have, as well as evaluated the simplicity and comprehensibility of these advanced

operations.

3.2.2.5 Java Database Connectivity (JDBC)

When comparing the aspect of Java Database Connectivity (JDBC) for each of these three

database systems, we began by delving into the differences within the specific processes they

require to successfully establish a connection to the database through Java. Additionally, we also

checked whether there were any syntactic differences in the Java code required to iterate through,

retrieve, and update data within their associated database. JDBC provides a standardized interface

for connecting certain types of web-based applications such as e-businesses to databases and

ensuring consistent data management across various platforms and servers (Wang, 2003). We

16

investigated and conducted the comparison of this aspect for each of these three database systems

by first researching and manually going through their respective processes required to successfully

connect to the database through Java. Lastly, we analyzed and discussed the differences found in

the Java code between the three systems.

3.2.2.6 Python Database Connectivity

To determine the differences in Python code in each SQL technology, we began by delving

into the differences within the specific processes they require to successfully establish a connection

to the database through Python. Additionally, we also checked whether there were any syntactic

differences in the Python code required to iterate through, retrieve, and update data within their

associated database. Connecting Python to a database allows for automated extraction and storage

of specific information, such as customers' transactions from bank account statements, for further

automated analysis, thereby reducing manual work and potential inaccuracies (Nandi, 2021). We

investigated and conducted the comparison of this aspect for each of these three database systems

by first researching and manually going through their respective processes required to successfully

connect to the database through Python. Lastly, we analyzed and discussed the differences found

in the Python code between the three systems.

17

4 Results and Discussion

4.1 Installation Complexity
In the case of installation complexity, we found that for the most part, and on most systems,

the Installation of the servers and proprietary IDEs are similar, with a couple notable outliers.

4.1.1 MySQL and Postgres

Both MySQL and Postgres have similar and intuitive installation processes. It asks for

standard database information, such as port number, file location, and a root username and

password. Both installation processes take relatively short amounts of time, while also installing

their proprietary IDEs and other useful tools for the user, in a straightforward and intuitive way.

The installers are also easy to locate on their respective websites, making the whole process easy to

follow in every step. Additionally, the installation processes are almost the exact same between

Windows and MacOS, two of the most popular operating systems, meaning this will work

smoothly for a wide variety of computer architectures. For the complete MySQL and Postgres

installation processes, refer to Appendix E: Postgres Installation for macOS, Appendix G: Postgres

Installation for Windows, Appendix I: MySQL Installation for MacOS, and Appendix K: MySQL

Installation for Windows.

4.1.2 Oracle

Oracle is a notable outlier when it comes to the ease of product installation. Though the

Windows installer is comparable to Postgres and MySQL in ease of use, and installs the server

without a hitch, it does not install the proprietary IDE for the user, creating an extra step that could

be avoided through the user of a different language. However, this issue is trivial compared to the

steps that are required to install Oracle on a macOS system. For Oracle to be installed on an Apple

computer, it is required to use either Docker or a Virtual Machine, complicating the process

significantly. In addition to this complication, while it is possible to install the Oracle server on

Docker using the same terminal commands as with a macOS with an Intel chip with a macOS with

an Apple chip, the latter requires a few extra installations and terminal commands such as a tool

called Colima to complete the process required to do so. For the complete Oracle installation

process, refer to Appendix A: Oracle Installation for macOS through Docker and Appendix C:

Oracle Installation for Windows.

4.1.3 Analysis and Discussion

Overall, the installation of the three different servers is typically very easy to access and

perform. Postgres and MySQL seem to be the most consistent and easiest to follow, and though

Oracle is certainly viable, it has the most difficulties of the three by a significant amount, being

substantially more difficult on macOS as opposed to the two other languages.

18

4.2 Setup Complexity
Once the user has successfully installed all the software required to use Oracle, MySQL

and/or Postgres, they are then able to begin the steps to set up a SQL server, including

authentication for themselves and user privileges. For setting up authentication for themselves and

user privileges, all three systems require the user to do all this by connecting to their database server

to make when installing all the software required to use these systems if one is not already provided.

After all that is done, for all three systems, the user can open their IDE environment using both

their newly created authentication and details relating to how to connect to their database server.

The first step in creating users is to access the SQL server from the terminal. This will allow

the user to run some commands directly in the server to interact with it. Oracle requires the most

amount of upfront work to get into the server from the terminal. However, MySQL and Postgres

both are more straightforward.

For users using Oracle on macOS, they must use Docker to simplify the process of running

the SQL server. This process requires several extra commands that must be run from the command

. Once they have access to the

Oracle database through their terminal, both MacOS and Windows users alike will be prompted

to enter a username to fully conn

terminal for the next steps of the Oracle setup process.

Unlike Oracle, MySQL and Postgres do not need Docker on either macOS or Windows.

This means that the number and complexity of the terminal commands used to connect to the

database is significantly less. Once in the MySQL server in their terminal, users can start creating

authentications for themselves in a very similar method to how it is done in Oracle. Accessing

Postgres in the terminal is very similar to accessing MySQL. It just requires running a specific

command with the correct credentials to open the connection.

The next steps of set up process revolve around a user setting up authentication for

themselves, and user privileges. All three languages follow a very similar process to accomplish

this. The first step, once the server is running, is to create a user to interact with the server. Then,

they can grant all the privileges that they need for interacting with a database. For the complete

setup processes for all three systems, refer to Appendix B: Using Oracle on macOS through Docker,

Appendix D: Using Oracle on Windows, Appendix F: Using Postgres on macOS, Appendix H:

Using Postgres on Windows, Appendix J: Using MySQL on MacOS, and Appendix L: Using

MySQL on Windows.

19

4.2.1 Analysis and Discussion

Based on the setup processes of the three systems detailed above, it is evident that the

complexities involved in each setup differ around the steps to access the database through the

IDEs. For a macOS user navigating Oracle's setup, the distinctive element lies in its Docker-based

installation, necessitating various specific terminal commands to access the Oracle database

through terminal, while Windows user can just use to do so. However,

MySQL introduces a more complex set of steps to access the database through the terminal due to

the requirement to fetch specific file path information. This complexity is especially seen for

macOS users as they must interact with Finder in specific ways to access the necessary directories

to get that information. In contrast to Oracle and MySQL, Postgres the

database through the terminal is particularly simple for macOS users as it requires just one

command. For Windows users on the other hand, Postgres the database

through the terminal

it also requires users to follow similar steps to fetch a file path before being able to do so. Now in

terms of users creating user authentication for themselves, while Oracle requires a specific session

alteration command before allowing users to do so, both MySQL and Postgres allow users to do so

without any commands of such.

4.3 Proprietary IDEs
The Oracle, MySQL, and Postgres database systems each have a proprietary IDE that one

can use to connect to the database servers. Each of these IDEs support a variety of features. These

features range from allowing users to see exactly how their created tables to allowing users to

import data from certain file types into the IDE and exporting data from the IDE to certain file

types. In order to use the majority of the features available, the user must open a connection to

their server. This will involve typing in a series of information from the installation and setup

phases including, but not limited to, the host name, port number, username, and password. These

are the bare minimum that will show up in all three ectly, will permit

the tool to interact with the specified server. Refer to Appendices B (Using Oracle on macOS

through Docker), D (Using Oracle on Windows), F (Using Postgres on macOS), H (Using Postgres

on Windows), J (Using MySQL on MacOS), and L (Using MySQL on Windows) for more

information regarding adding a connection within the IDEs.

4.3.1 Oracle

 The first feature that a user has access to

once they successfully connect to the Oracle database server using SQLDeveloper is a pre-made

SQL worksheet. The provided worksheet is what allows users to write their SQL code. However, if

users wish to create additional SQL files, all they have to do is tab displayed at

the top of the SQLDeveloper, then

additional SQL file.

20

On the left side of the SQL worksheet, the users will see a list of all the connections that

they made to the database server. Simply by double-clicking on one of those connections, the user

will get access to various things such as all the tables they made using the deployed connection,

along with other things such as views, triggers, procedures, and functions. If a user double-clicks

any of these options, they will get access to additional features inside their IDEs. An example of

such features is that by double-clicking on any of the displayed tables, the user will get access to a

menu that allows them to see things like how their tables are structured, the data stored inside of

them, and an ER diagram showing exactly how they are related to other tables made by the user.

In addition to all those features, SQLDeveloper gives the users the ability to directly import

and export data. In order to import data, the first thing a user must do is right click

label in their connection menu . Once that is done, the

user can select a file by browsing on their computer. Example types of files that can be used to

easily import data is Microsoft Excel, .HTML, .JSON, and .CSV. If all the columns are properly

formatted, then when the user selects the file, all the columns and the data inside will automatically

be formatted correctly, and the user just has to give its new table a name. Once that is done, the

user then can select exactly the columns that they wish to include in their table. To complete

creating their new table from the imported data, all the user has to do is configure the datatype for

each of the columns that they wish to include in their new table. In SQLDeveloper, in addition to

being able insert data to an entirely new table, it is also possible to simply insert additional rows to

an already existing table. This can be done in the exact same way as inserting data for an entirely

new table that a user is creating with the exact same file types. The only differences are that the

user will not be able to name the table for which they are importing the data to, and that they will

not be able to decide the datatypes for the columns of the table that they wish to import the data

to.

In order to successfully export data from SQLDeveloper, users must first query the database

so that they can successfully fetch all the data that they wish to export. Once that is done, the user

will be prompted to give a table name for the data that they wish to export and select the type of

file that they wish to have the data exported to. Examples of the file types available to do this with

is Microsoft Excel, .HTML, .JSON and .CSV. To finish exporting the data, all users have left to do

after finishing these steps is name the file and decide where on their computer do they want the

file saved.

4.3.2 MySQL

MySQL offers MySQL Workbench to access MySQL servers in a graphical user interface.

From the home page of this application, the user can add, manage, and remove connections to

specific MySQL servers hosted locally or in the cloud. Once a user has created a connection with

the appropriate host address, username, and password that correlate with the SQL server, they will

be presented with a MySQL Model tab. From here they can interact with database schemas in a

variety of ways. They can use advanced database manipulation features such as adding Enhanced

21

Entity-Relationship (EER) diagrams, adding tables, views, and other items directly, or modifying

schema privileges. On top of this, they can open query tab in addition to the one already provided

to them when connected to be able to directly interact to SQL.

MySQL Workbench allows users to import and export large entire databases using the Data

Import and Data Export tools. These . From the Data Export

tab, they can select a specific schema or multiple schemas as well as a folder location to dump all

the data into. This can later be used to recreate a full database in the Data Import tab.

ture, MySQL Workbench supports

importing and exporting .CSV and .JSON files. This can help by importing a massive amount of

data into a single table as opposed to into the entire database like the Data Import and Data Export

tabs. To accomplish this, right click on a table in the active schema, and select Table Data Import

Wizard or Table Data Export Wizard.

4.3.3 Postgres

Postgres offers pgAdmin 4 to manage and view tables. The dashboard provides graphs to

show the user the active database sessions, transactions per second, tuples in, tuples out, and block

I/O. This provides the user an overview of the current usage of the database as time, giving them a

very precise idea of its functionality. pgAdmin places significant emphasis on this, with many tabs

showing dependencies and intricacies of the database, which could be daunting for newer users.

The user is also able to use a query tool to execute select lines of SQL and can open

preexisting SQL files into it. Something important to note is pgAdmin 4 does not show the data in

pgAdmin 4 when the user parses through the tables, instead the user must select a table and then

select the View Data button in the top left, which is less intuitive than other platforms. Once data

is selected in this manner, the user can select a data filter option, and filter the data based on their

commands.

pgAdmin 4 supports a PSQL tool, opening a command line style console, which allows the

user to input their commands as they would in a terminal. It also supports an entity relational

diagram tool, allowing users to create and format ERDs from within the application.

Lastly, pgAdmin 4 supports the importing and exporting of data through text, binary, and

CSV files through the tool menu. This allows the user to move significant amounts of data into file

format from databases, or vice versa, while also having the option to wipe the preexisting data

when importing from files.

4.3.4 Analysis and Discussion

Based on the overview while they all support similar

features, there are differences in terms of the steps required to access those features, and the

limitations of some of them. All three of these database systems, will require valid connection

22

information before interacting with any SQL server. Oracle's SQLDeveloper and MySQL ySQL

Workbench are quite similar in how they are set up. Both focus on making it easy to work with

SQL and help users design and manage databases smoothly. In Oracle's SQLDeveloper, as soon as

users connect, they get direct access to an SQL worksheet to start interacting with SQL right away.

If users want new SQL files, there's a clear "File" button at the top of the IDE that allows them to

create those new files. On the left side of the IDE, users can see a list of their connections, and if

they click on these, they will find things like their created tables, views, and more. Another feature

worth mentioning is that users can click on a table and see a picture (an ER diagram) that shows

how it connects with other tables. Furthermore, SQLDeveloper provides direct import and export

data capabilities. Users can easily import data from formats like Microsoft Excel, .HTML, .JSON,

and .CSV by right-

On the flip side, exporting data requires users to first query the database, after which they can

choose from the provided export file formats available such as Microsoft Excel, .HTML, .JSON,

and .CSV, name the file, and save it. MySQL Workbench is quite user-friendly as well.

Using this IDE, users can swiftly set up, manage, or disconnect from MySQL servers from both

their local machine and the cloud. A feature that MySQLWorkbench shares with SQLDeveloper is

how the user gets access to a graphical user interface that allows them to interact with SQL as soon

as they connect. In addition to this, if users want a visual representation of their database's layout,

much like Oracle's ER diagrams, MySQLWorkbench also offers advanced features such as

Enhanced Entity-Relationship (EER) diagrams. In terms of importing and exporting data, MySQL

Workbench has its own functionality that helps with the importing and exporting of .CSV and

.JSON files. Although this MySQLWorkbench feature is not supported for as many file types and

formats as SQLDeveloper, it still allows users to work with commonly used file types and formats.

By right-clicking on a table in the active schema, users can utilize the Table Data Import Wizard

or Table Data Export Wizard for these tasks. While SQLDeveloper and MySQL Workbench are

both suitable IDEs for students in an introductory database course, Postgres not as

suitable for such users. To begin, just launching it reveals a dashboard filled with real-time metrics

such as active sessions, transactions per second, and granular data movement details like "tuples

in" and "tuples out". While these kinds of features might be very useful for professional database

users, they can be quite overwhelming and ambiguous for students in an introductory database

course. Despite this, the way to view data inside tables in pgAdmin 4 is similar to the way to do so

in SQLDeveloper. All users must do to view data inside tables in pgAdmin 4 is first select a table

and then finding and clicking the "View Data" button. In addition to this simplicity, all users need

to do to access data import/export functionality is

tools menu.

4.4 Cloud Pricing
In addition to having proprietary IDEs that one can use to connect to the database server,

Oracle, MySQL, and Postgres also offer online cloud services that allow users to interact with the

database server online. These services can range from automated data backup to giving users

23

additional databases with powerful tools for data analytics. For all three systems, the pricing of

these cloud services depends on the kinds of services available that a user wants to use, and the

amount of time that they wish to use the services.

4.4.1 Oracle

can vary

based on what users use this service for, it does come with a free tier. This free tier provides users

various free unlimited services such as wo Oracle Autonomous Databases with powerful tools

like Oracle APEX and Oracle SQL Developer and "up to 4 instances of ARM Ampere A1

Compute with 3,000 OCPU hours and 18,000 GB hours per month" (Oracle, n.d.-a). In addition

to the unlimited services, the free tier also comes with a $300 USD cloud credit that grants users

access to a wide range of Oracle Cloud services for 30 days, including Databases and Analytics

and (Oracle, n.d.-a).

4.4.2 MySQL

MySQL also comes with its own cloud infrastructure Some of

the features of this infrastructure include a database that can be used for things like real-time

analytics, very fast performance, and the fact that it can be used through other cloud services such

as Amazon Web Services (AWS), and Oracle Cloud Infrastructure (OCI). While this cloud

infrastructure does not come with an official free tier, users do have the ability to try it out for free

if they use it through either AWS or OCI (MySQL, 2019).

4.4.3 Postgres

While Postgres does not have an official Cloud Service like Oracle and MySQL, there are

ways that users can use it online without connecting to the server through an IDE. One of such

ways is a service called Postgres Through this service, users have access to fast

storage, automated backup and recovery, easy database deployments, and increased security.

While this service does not come with an official free tier, users signed up to AWS can start using

this service for free (Amazon Web Services, 2019). Another way users can connect to the Postgres

database server online is through Postgres . This service comes with its own

benefits such as a flexible server for simplified user experience, and AI-powered intelligent

performance optimization and query store to build and scale databases. In addition to these

benefits, the service comes with extensions for Azure Data Studio and Visual Studio Code, and can

be used in languages such as Python, Ruby, Node.js, and Java. While this service does not come

with an official free tier, users with Azure account can start using the service for free (Microsoft,

n.d.).

4.4.4 Analysis and Discussion

Based on the three systems cloud offerings detailed above, it's evident that the main

differences lie in their pricing structures and accessibility options. To begin, unlike the MySQL and

Postgres, Oracle has its own official "Oracle Cloud Infrastructure", free tier accompanied by a $300

24

USD cloud credit available for an initial period of 30 days granting a wide range of functionalities

from databases to analytics readily available to users. On the other hand, while users can begin

using for free when accessing via partner platforms such as Amazon

Web Services and Oracle Cloud Infrastructure, it does not come with an official free tier like Oracle

Cloud Infrastructure does. Postgres, though sharing similarities with MySQL's situation of lacking

a direct free offering, introduces a slight difference. While it also uses other major platforms such

as Postgres Postgres to provide users cloud services

initially for free, it does not have its own direct cloud service. It should also be noted that if a user

wants to through other platforms, they must have accounts

created for those respective platforms first.

4.5 Datatypes
Datatypes are a fundamental aspect of any programming language, especially when

interacting with databases. Different forms of content within software applications can be broken

down into fundamental data types. An article can be broken down into sections, paragraphs,

sentences, words, and eventually characters. A map guiding them from address A to address B can

be broken down into a list of coordinates to follow. A date of time can be broken down into years,

months, days, hours, minutes, seconds, and more. Characters, coordinates, date/time, and

numbers are just a few of the datatypes that most databases will support.

4.5.1 Numerical Datatypes

MySQL, PostgreSQL, and OracleSQL all implement the same principles about storing

different types of numbers. They support both exact and inexact formats. If users know precisely

what size of number they would like to store, they can use an exact type. However, if they do not

know this, they would use an approximate format such as a floating-point number.

In OracleSQL, to describe an integer, users will say NUMBER(P) where P(precision) ranges

from 1 to 38 and represents the total number of digits that they can store in the datatype. So,

NUMBER(3) can represent any number from -999 to 999. This differs from MySQL and

PostgreSQL in that these two languages both support named integer sizes. Both implement

SMALLINT, INTEGER/INT, BIGINT, and MySQL also supports TINYINT and MEDIUMINT.

TINYINT represents 1 byte of storage, SMALLINT represents 2 bytes of storage, MEDIUMINT

represents 3 bytes of storage, INT represents 4 bytes of stores, and BIGINT represents 8 bytes of

storage.

Another example of an exact format is the fixed-point data type. This represents a number

where users know exactly how many numbers there are before and after the decimal point. In

OracleSQL, users represent this with NUMBER(P, S) where P(precision) ranges from 1 to 38 and

S(scale) ranges from -84 to 127. The precision still represents how many digits to the left of the

decimal point, but the scale now represents the total number of digits point. When S is negative,

this will round the number at the value S to the left of the decimal. For example: NUMBER(3, 2)

25

ranges from -9.99 to 9.99. However, NUMBER(3, -2) ranges from -900 to 900 but only by multiples

of 100 due to the rounding: -900, - MySQL and PostgreSQL also implement this

same formula swapping out the keyword NUMBER in favor of DECIMAL or NUMERIC for

clarity.

However, as developers, users may not always know the exact precision or scale of a

number. This is when they would use a floating-point datatype. OracleSQL implements this with

three independent datatypes: FLOAT, BINARY_FLOAT, and BINARY_DOUBLE. The

FLOAT(P) datatype is a subtype of the NUMBER datatype, specifically used for base-10 arithmetic.

The P for precision in this type refers to the binary digits for the mantissa as opposed total number

of decimal digits supported. BINARY_FLOAT is a datatype made to the IEEE 32-bit floating-point

specification, and the BINARY_DOUBLE is a datatype made to the IEEE 64-bit floating-point

specification. To specify floating-point literals in OracleSQL, users

the back of any decimal value 0.0 . This differs from PostgreSQL which uses the types

REAL and DOUBLE PRECISION to represent floating-point numbers. REAL has a storage size of

4bytes and a minimum precision of 6 decimal digits, whereas the DOUBLE PRECISION has a

storage size of 8 bytes and a minimum precision of 15 decimal digits. MySQL also has its own

implementation of floating-point numbers. They use FLOAT and DOUBLE. The FLOAT(p) and

DOUBLE(p) syntaxes can be used to specify an optional precision from 0 to 23 in a 4-byte single-

precision FLOAT column, and 24-53 in an 8-byte double-precision DOUBLE column. In older

versions of MySQL, there were non-standard representations of floats: FLOAT(M, D), REAL(M,

D), and DOUBLE PRECISION(M, D), where values can be stored with up to M total digits with D

digits after the decimal point. However, these non-standard representations have since been

deprecated.

4.5.2 Date and Time Datatypes

Managing date and time values is crucial in database systems, as they play a significant role

in various applications, from logging events to scheduling tasks. MySQL, PostgreSQL, and

OracleSQL offer a range of datatypes to handle these values, each with its own nuances.

All three of these will support basic datatypes to represent an instant in time. In OracleSQL,

the DATE datatype represents a date and a time by storing the year, month, day, hour, minute, and

second. This differs from PostgreSQL s which only represents a date

by storing the year, month, and day without time. Both MySQL and PostgreSQL also implement a

TIME datatype representing the hour, minute, and second of a time. Like OracleSQL

MySQL and PostgreSQL implement DATETIME and TIMESTAMP respectively to represent a

date and a time. One note to make is that OracleSQL a DATE

but with the added precision of a fractional second with up to 9 decimal places.

To save an interval of time as opposed to an instance in OracleSQL, users can use the

datatypes INTERVAL YEAR TO MONTH or INTERVAL DAY TO SECOND which will

26

represent an interval using years and months or using days, hours, minutes, and seconds

respectively. PostgreSQL has a bit more customization when it comes to storing an interval.

Specifically, it follows this format: quantity unit [quantity unit] [direction]. Quantity represents

a possibly signed number and unit can be swapped out for microsecond , millisecond , second ,

minute , hour , day , week , month , year , decade , and century . The angle brackets represent

s means

that users can combine multiple units each with their own quantity to the

interval. Lastly, [direction] means that users can option to add

directionality. Although there is no formal interval datatype in MySQL, users can still use the TIME

datatype in a similar way to interval in other systems. MySQL does support the YEAR datatype to

represent a 4-digit year as well.

4.5.3 String Datatypes

String datatypes are essential for storing text-based data, such as names, addresses, and

descriptions, in databases. MySQL, PostgreSQL, and OracleSQL provide various string datatypes

to accommodate different needs and use cases. Similar to how numeric datatypes ware split into

exact and approximate formats, strings have two main types: fixed-length and variable-length.

All three database systems implement the same base type of CHAR(n) to store exactly n

characters in a fixed-length datatype. Often, the database designer does not know exactly how

many characters will be saved in any given string. When this is the case the datatype VARCHAR(n)

is very useful. When using VARCHAR(n), the string can store up to but not exceeding n characters.

Note: in OracleSQL the VARCHAR type has been deprecated in favor of the VARCHAR2(n)

datatype which behaves just like VARCHAR(n) in the other two systems.

Sometimes it is necessary to store variable-length strings without an upper limit. MySQL

takes advantage of a BLOB type which stands for binary large object to store text. There are four

sizes of blobs: TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB differing only in the

maximum length of values that they can hold. Although these are meant specifically for binary

strings, there are four datatypes built on these called TINYTEXT, TEXT, MEDIUMTEXT, and

LONGTEXT that are specifically designed for storing large variable-length strings. PostgreSQL

also has a binary large object however it is named BYTEA, but if users want to explicitly store a

large variable-length string, they can use the TEXT datatype. OracleSQL also had its own

implementations for these types: BLOB and CLOB (character large object). Additionally, both

PostgreSQL and OracleSQL are able to declare a VARCHAR or VARCHAR2 with no specified

length, similar to TEXT, but MySQL does not have access to that functionality. This functionality

allows maximum length Strings without using the TEXT field.

String datatypes are pivotal for representing textual information in databases.

Understanding the characteristics and proper usage of different string datatypes in MySQL,

PostgreSQL, and OracleSQL is crucial for effective database design and data management. By

27

choosing the appropriate string datatype and applying best practices, developers can optimize

storage, enhance performance, and ensure the integrity of text data in database systems.

4.5.4 Other Notable Datatypes

Beyond the standard numerical, date/time, and string datatypes; MySQL, PostgreSQL, and

OracleSQL offer a variety of other notable datatypes, each serving unique and specialized purposes.

In MySQL, the ENUM datatype is significant, allowing representation of a string object with a

value chosen from a list of permitted values defined during table creation, ideal for representing a

fixed set of related items. The SET datatype in MySQL is akin to ENUM but permits the storage of

one or more values from a predefined list, making it suitable for representing collections of

attributes. The BIT datatype in MySQL is crucial for storing bit values, providing an efficient means

to store binary data such as flags or states in a compact form. Ad

datatype is pivotal for storing JSON-formatted strings, enabling the manipulation of JSON

documents directly in SQL queries, ideal for handling semi-structured data.

In PostgreSQL, the ARRAY datatype is noteworthy, capable of storing ordered sets of

elements, facilitating the storage and processing of sequences of values. The HSTORE datatype is

a key-value store within a single PostgreSQL value, apt for storing simple object-relational

mappings. The UUID datatype in PostgreSQL is essential for storing universally unique identifiers,

optimizing the assignment of unique identifiers in a distributed database environment.

PostgreSQL also supports JSON and JSONB datatypes for storing JSON data, with JSONB allowing

indexing and offering efficiency in searching and processing, while JSON preserves the input

format.

OracleSQL introduces unique datatypes like RAW and LONG RAW for storing binary

data, suitable for handling small amounts of binary data such as hashes or checksums. The ROWID

and UROWID datatypes in OracleSQL represent the unique address of a row in its table,

optimizing performance in row-specific operations. The XMLType datatype in OracleSQL is

significant for storing XML data, allowing the manipulation of XML documents directly in SQL

queries, ideal for handling structured XML data. Lastly, OracleSQL

datatypes can store instances of any datatype, including object types and collections, providing

flexibility in building generalized routines and data structures.

Understanding and leveraging these specialized datatypes allow developers to design more

flexible and efficient database schemas, enabling the representation and manipulation of a diverse

range of data structures and formats, thereby enhancing the versatility and capability of database

systems.

28

4.6 Table Management

4.6.1 Schema Used

Figure 3: Schema used throughout the Table Management section. Note: Authors.email is a unique key. Books.author_id is a

foreign key with Authors.author_id. Reviews.book_id is a foreign key with Books.book_id.

For this part of the project, we analyzed the syntactic differences and the complexity

involved in creating tables and defining constraints across the Oracle, MySQL, and Postgre

database systems. Through our analysis, we observed that all three systems employ the CREATE

TABLE command, immediately followed by the table name. This is then followed up by a list of

column definitions with their respective data types, enclosed within parentheses. However, it's

worth noting that the specific data types available and their nuances might vary across these

systems. In addition to this, constraints whether they are primary keys, unique keys, or foreign

keys are delineated within the same set of parentheses. Once all that is done, the user needs to

aspect of Table management across all three systems is the fact that MySQL and PostgreSQL

demonstrate greater flexibility compared to OracleSQL. This is because they offer a broader range

of commands and allow for constraints that are not available in OracleSQL. In addition to this,

when it comes to dropping tables, OracleSQL lacks the "IF EXISTS" option that is available in both

MySQL and PostgreSQL. This option prevents an error if the table targeted to be dropped does not

exist.

4.6.2 Oracle

When creating a table in OracleSQL, if a user wants to add a constraint to restrict the values

allowed for a specific column, they only have one command that they can use to do so:

Figure 4: SQL Code to create an Authors table in OracleSQL.

29

The only way to restrict the values allowed for a specific table column in OracleSQL is by

using the CHECK command. For instance, looking back at our defined schema, in our Authors

table, we have used the CHECK command on the country column to ensure that only authors from

'USA', 'UK', 'Canada', or 'Australia' can be added. This is achieved using the line CONSTRAINT

Authors_country_CHK CHECK (country IN ('USA', 'UK', 'Canada', 'Australia')). In addition to

this restriction, OracleSQL presents another challenge. When a user wants to automatically update

foreign key values in one table due to changes in primary key values in another table, there's no

it, the

OracleSQL does not

natively provide a mechanism to automatically reflect these changes in the "Books" table where this

are not natively supported in OracleSQL. As a result, if users wish to implement such functionality

in OracleSQL, they must find other ways to do so, like employing triggers.

Figure 5: SQL Code to drop the table named Reviews in OracleSQL.

Something else that is different in OracleSQL than in MySQL and PostgreSQL is the

restricted syntax used to drop existing tables. The way to drop a table in OracleSQL is to use the

For instance, using our

prev

drop table . However, unlike MySQL and PostgreSQL, OracleSQL does not have the

safeguard of the "IF EXISTS" option, so attempting to drop a non-existent table will result in an

error.

4.6.3 MySQL and Postgres

When creating a table in either MySQL or PostgreSQL, if a user wants to add a constraint

to restrict the values allowed for a specific column, they have more flexibility to do so than in

OracleSQL as they have more commands that they can use:

30

Figure 6: SQL Code demonstrating how in MySQL, users can use either the ENUM syntax or the CHECK syntax to limit specific

values in a table.

Figure 7: SQL Code demonstrating how in PostgreSQL, users can either use a custom defined ENUM type or the CHECK syntax

to limit specific values in a table.

In MySQL and PostgreSQL, users have the flexibility to restrict the values of a specific table

column between the two. In MySQL, the

can be directly incorporated into table definitions. For instance, looking back

at our defined schema,

en apply it as a column's data

31

similar to OracleSQL,

check

IN ('USA', '

In addition to this flexibility, both MySQL and PostgreSQL offer comprehensive solutions

when compared to OracleSQL, particularly regarding the challenge of updating foreign key values

in one table when primary key values in another table change:

Figure 8: Valid Table Creation in MySQL and PostgreSQL. Uses ON UPDATE CASCADE.

Figure 9: Valid Table Creation in MySQL and PostgreSQL. Uses ON UPDATE SET NULL.

Both systems provide the command, which automatically

updates matching foreign key values when the referenced primary key value changes, and the

 command, which sets the foreign key to NULL if its corresponding primary

key value is modified. For instance, looking back at our defined schema , the

author_id column serves as a foreign key referencing the author_id primary key in the

Authors table. If an author_id in the Authors table is updated, these mechanisms ensure

changes are reflected in the "Books" table

_id

Something else that is different in MySQL and PostgreSQL than in OracleSQL is the more

flexible syntax used to drop existing tables:

32

Figure 10: The 'IF EXISTS' option that can be used in MySQL and PostgreSQL to drop the 'Reviews' table if it already exists.

Similar to OracleSQL

For instance, using our

drop table . However, what these two systems have that OracleSQL does not is the

safeguard of the "IF EXISTS" option, which ensures that users will not encounter an error when

trying to drop a non-existent table.

4.6.4 Analysis and Discussion

Despite the overwhelming similarity in the table creation statements between the three

languages, there are a few notable changes. As seen in the differences described above, when

comparing the aspect of Table Management across the OracleSQL, PostgreSQL, and MySQL

database systems, the main differences lie in their flexibility regarding the constraints that they

allow, and the way tables are dropped. To begin, while OracleSQL only has the CHECK command

to restrict the values allowed for a specific table column, both MySQL and PostgreSQL allow users

Another example where this applies is while OracleSQL does not have any direct mechanism when

a user wants to automatically update foreign key values in one table due to changes in primary key

values in another table, both MySQL and PostgreSQL do. Both systems come with the

 command, which automatically updates matching foreign key values when

the referenced primary key value changes, and the command, which

sets the foreign key to NULL if its corresponding primary key value is modified. In terms of the

way to drop tables across all three systems, the difference in flexibility can be seen there too. While

both MySQL and PostgreSQL

have an added layer of protection that OracleSQL does not. That layer of protection is the safeguard

of the "IF EXISTS" option, which ensures that users will not encounter an error when trying to

drop a non-existent table.

4.7 Data Manipulation
 Insert, Update, and Delete statements are the primary tools for data manipulation in all

SQL languages. These statements are so fundamental that they remain the exact same between the

three languages. Even when using some of the more advanced techniques covered in introductory

database courses, such as a nested subquery in a delete or update statement, the syntax stays

consistent between the three languages.

33

4.8 Query Simplicity
Queries throughout the three languages are overwhelmingly similar in structure. The three

languages utilize the same primary keyworks when constructing queries, such as SELECT, FROM,

WHERE, and GROUP BY. An example of code that is compatible with all three languages is as

follows:

Figure 11: Example query that is valid in OracleSQL, PostgreSQL, and MySQL.

All queries in each of the languages follow the same structure of SELECT, FROM, GROUP

BY, HAVING, and ORDER BY.

This is one of the more advanced queries that would be seen in an introductory class,

featuring aggregation, grouping, and having statements, along with multiple nested subqueries.

This is just one example of how many queries are formatted the same way between languages.

There were only some noticeable differences with certain keywords, such as MINUS and

EXCEPT. PostgreSQL does not support the MINUS keywork, and instead uses EXCEPT, while the

other two languages use MINUS. Additionally, PostgreSQL requires aliasing for subqueries, not

allowing their usage if they are not properly aliased.

There are more specialized elements of queries that are only available in certain languages,

such as the IF function. Only MySQL supports IF usage in queries, while PostgreSQL and

OracleSQL are limited to CASE statements.

4.9 Advanced Functionality
It is worth mentioning that procedures and functions are part of proprietary functional

programming languages provided by the database system to supplement the existing SQL, which

is a declarative language.

34

4.9.1 Views

Views functioned in the exact same ways throughout the three languages. The only

difference is that MySQL does not support materialized views, which is a static storage of data

based on the schema at the time the view was created. Materialized views are not likely to be

covered in an introductory course, so this difference is largely irrelevant for the purpose of this

study.

4.9.2 Procedures
4.9.2.1 Schema Used

Figure 12: Schema used throughout the procedures section. Note: Employee.locationID is a foreign key with

Location.locationID.

The purpose of the procedure was to display an employee's name, location's short name,

employee ID, and username based on the inputted first and last names.

4.9.2.2 Oracle

Figure 13: A procedure defined in OracleSQL used to print out information about an employee's location based on their name.

35

The first important procedure distinction of OracleSQL is the fact that running the line

SET SERVEROUTPUT ON To

complement this distinction, OracleSQL uses its own DBMS_OUTPUT.PUT_LINE() function to

display messages on the console. To use this function, the SET SERVEROUTPUT ON; must

have run first. Following those distinctions, procedures in OracleSQL must at the

end to properly compile. To run the procedure in OracleSQL, place the keyword EXECUTE

followed by the proper procedure name and the proper inputs.

4.9.2.3 Postgres

Figure 14: A procedure defined in PostgreSQL used to print out information about an employee's location based on their name.

PostgreSQL has a few very specific syntactical requirements. The language must be

prefaced as plpgsql either before or after the body of the procedure. The body of the procedure

must be signaled with a delimiter of the format $$, with text between the dollar signs if two or more

different delimiters are used. Outputs are raised from procedures with the RAISE NOTICE

command, and data is entered into the provided notice string using the percent character.

Procedures are called with the CALL command in the format seen above.

4.9.2.4 MySQL

One major difference from this procedure definition in MySQL specifically is the LOOP

keyword. In PostgreSQL and OracleSQL, we took advantage of a for loop to iterate over the cursor.

In MySQL, however, we need to build out a for loop using custom_loop_label: LOOP

 Since there is no underlying implementation to

automatically after the last cursor result, like the for loop has, users

declared ate over.

Another key difference regarding procedures in MySQL is how unlike OracleSQL and PostgreSQL,

MySQL does not support the "OR REPLACE" clause.

36

Figure 15: A procedure defined in MySQL used to print out information about an employee's location based on their name.

This means that, in MySQL, if users need to modify an existing procedure, they must

manually drop it and then redefine it. Furthermore, also unlike the other two languages, MySQL

does not have a straightforward mechanism like to directly display messages on the console, thus

making it harder for users to display information using procedures. Despite these drawbacks,

MySQL does support procedure declaration

to be able to avoid encountering an error if they try to create a procedure that they have already

created. As for the delimiters, similarly $$ syntax, MySQL uses

end of the procedure. Just like PostgreSQL, procedures

in MySQL are called using the CALL command.

4.9.2.5 Analysis and Discussion

Overall, the procedures documented in each language display similarities and differences.

The structure is essentially the same in all, with minor differences being with the delimiters, loop

declaration, cursor declaration, MySQL's lack of support for the "OR REPLACE" clause, and

procedure call. Every language features some kind of delimiter to section the body of the

procedure, and PostgreSQL specifically requires a language declaration statement. The way that

messages are printed to the console is notably different in all languages. While PostgreSQL and

OracleSQL have methods more in line with other systems, MySQL does not have a direct way to

display messages on the console. Additionally, OracleSQL is the only language that requires server

messages to be manually enabled. However, what MySQL supports that the other two languages

cedure declaration to be able to

avoid encountering an error if they try to create a procedure that they have already created.

37

4.9.3 Functions

4.9.3.1 Schema Used

Figure 16: Schema used throughout the functions section. Note: MedicalEquipment.locationID is a foreign key with

Location.locationID.

The purpose of this function was to determine and return the count of medical equipment

items present in a given location.

4.9.3.2 Oracle

Figure 17: A function defined in OracleSQL to get the equipment count based on a location's short name.

Similar to procedures, an important function distinction of OracleSQL is the fact that they

38

4.9.3.3 Postgres

Figure 18: A function defined in PostgreSQL to get the equipment count based on a location's short name.

PostgreSQL function syntax is very similar to its procedure syntax, also requiring the

delimiter and language specification. However, PostgreSQL differs from OracleSQL in its

requirement of a separate Declaration section, as opposed to simply declaring new variables after

the AS statement. Other than these, there are not many differences.

4.9.3.4 MySQL

Figure 19: A function defined in MySQL to get the equipment count based on a location's short name.

39

except there are a few notable differences. Firstly, the delimiters are used equivalently in this

definition as the procedure. The first difference is where we specify a return type; it requires a

specific datatype before the BEGIN statement. Another key difference regarding functions in

MySQL is that similar to procedures, unlike OracleSQL and PostgreSQL, MySQL does not support

the "OR REPLACE" clause. This means that, in MySQL, if users need to modify an existing

function, they have to manually drop it and then redefine it. Despite this drawback, MySQL does

t in the function declaration to be able to

avoid encountering an error if they try to create a function that they have already created.

Additionally, before the BEGIN statement, users can optionally add characteristics. A

characteristic can be one or more

DETERMINISTIC, NOT DETERMINISTIC, and a few other

options. In this example, the DETERMINISTIC characteristic was added to let the program know

that when running this function with the same input parameters it will always return the same

result.

4.9.3.5 Analysis and Discussion

Like procedures, the structure of functions does not see too much change between the three

languages other than some intricacies. All languages still use their respective delimiters, and all

specify a return type in roughly the same format. One of the most notable differences is the variable

declaration, with OracleSQL declaring before the BEGIN statement, PostgreSQL declaring in a

separate declaration section, and MySQL declaring within the Begin statement. Moreover, similar

to procedures, MySQL has a couple of distinctions from OracleSQL and PostgreSQL. Firstly,

unlike OracleSQL and PostgreSQL, MySQL does not support the "OR REPLACE" clause for

functions, thus requiring users need to manually drop a function and then redefine it if they wish

to modify it. Secondly languages

do not that users can put in the function declaration to be able to avoid encountering an error if

they try to create a function that they have already created. Apart from these, overall, the

differences between the languages in this section are not very prominent.

40

4.9.4 Triggers

4.9.4.1 Schema Used

Figure 20: Schema used throughout the triggers section. Note: TransportRequest.itemID is a foreign key with

MedicalEquipment.itemID.

The purpose of the trigger was to require the type of medical equipment of a new transport

request to be either a wheelchair or a recliner and display an error if it is not.

4.9.4.2 Oracle

Figure 21: A trigger defined in OracleSQL that errors when specific equipment types are inserted into the TransportRequest

table.

A first important trigger distinction of OracleSQL is the way they raise exceptions. The way

OracleSQL raises exceptions is RAISE_APPLICATION_ERROR

which takes in an integer below -20000 and an error message as parameters. In addition to this

distinction, there is also the fact that triggers in OracleSQL

compile.

41

4.9.4.3 Postgres

Figure 22: A trigger defined in PostgreSQL that errors when specific equipment types are inserted into the TransportRequest

table.

One important distinction of PostgreSQL triggers is the method in which they are written.

PostgreSQL triggers have no bodies of their own; they are only used to call a preexisting function,

as is shown above. The function which is called features all the typical features of a normal function,

including the language specifier and delimiter, however, it also specifies that it is returning a

trigger. In the body of the function, the values of the new row are accessed using the keyword

NEW, allowing a user to check the new rows for the purpose of the function, in this case making

sure the equipment type is correct. At the end of the function body, but prior to the actual end

statement, the value NEW should be returned, signaling the end of the trigger within the function.

An additional distinction of PostgreSQL triggers lies in the way errors are raised. The way

PostgreSQL raises exceptions is by using a the "RAISE EXCEPTION statement with an error

message inside the quotes.

4.9.4.4 MySQL

Figure 23: A trigger defined in MySQL that errors when specific equipment types are inserted into the TransportRequest table.

42

The MySQL trigger syntax is similar to OracleSQL

differences. Firstly, MySQL requires delimiters at the beginning and end of the trigger to separate

it from the rest of the query. Secondly, in MySQL, the DECLARE statements happen after the

BEGIN statement whereas in OracleSQL and PostgreSQL this happens before the BEGIN. Thirdly,

similar to procedures and functions, unlike OracleSQL and PostgreSQL, MySQL does not support

the "OR REPLACE" clause. This means that in MySQL, if users need to modify an existing trigger,

they have to manually drop it and then redefine it. In addition to these differences, the way MySQL

raises exceptions is by using "SIGNAL SQLSTATE" statement, followed by the string value

and the statement "SET MESSAGE_TEXT =

' ' with an error message inside the quotes. Another difference worth mentioning is that unlike

the other two languages, MySQL supports an

trigger declaration to be able to avoid encountering an error if they try to create a trigger that they

have already created.

4.9.4.5 Analysis and Discussion

Triggers see significantly more differences between the three languages than views,

procedures, or functions. All three languages feature the first three lines of the trigger being the

same, specifying when and how it is called. Additionally, the body and error statements are

functionally the same code, other than small syntactical differences. However, a notable difference

lies in the fact that all three languages have different ways of raising exceptions. The biggest

difference demonstrated is in PostgreS

to be executed when it is called, PostgreSQL requires a separate, preexisting function to be called

by the trigger. This adds a layer of complexity to PostgreSQL triggers that are not displayed by

MySQL or OracleSQL triggers. Furthermore, another distinction is that similar to procedures and

functions, unlike OracleSQL and PostgreSQL, MySQL does not support the "OR REPLACE" clause

for its triggers, meaning that any user modification requires dropping and redefining them.

Despite this, however, unlike the

that users can put in the trigger declaration to be able to avoid encountering an error if they try to

create a trigger that they have already created.

4.9.5 Advanced Functionality Analysis and Discussion

The general structure of most of these functionalities is the same for all three languages,

with views seeing no change, and the others most prominently seeing changes to their message

outputting or error raising syntax, and notably having distinct delimiters that differ between all

three. Among these differences, PostgreSQL's trigger system stands out as it requires a separate

function to be called, as opposed to OracleSQL and MySQL which simply have the body within

the trigger statement itself. Other pronounced differences lie in MySQL. To begin, unlike

OracleSQL and PostgreSQL, MySQL lacks support the "OR REPLACE" clause for procedures,

functions, and triggers alike. This means that if a user wishes to modify any of such objects in

MySQL, they need to manually drop them and then redefine them. On top of these differences,

43

MySQL that users can

put in procedure, function, and trigger declarations alike to be able to avoid encountering an error

if they try to create such objects that they have already created.

4.10 Java Database Connectivity (JDBC)

4.10.1 Schema Used

Figure 24: Schema used throughout the JDBC section.

What we had to do for this part of the project was to create a java program that would allow

users to use the OracleSQL, MySQL, and PostgreSQL database systems to access information

regarding specific hospital patients and employees and allow the employees to update their

password. While creating this program, the biggest differences noticed were that all three systems

had differences regarding the specific processes they require to successfully establish a connection

to the database through Java.

4.10.2 Driver Installation

The first step for each language is downloading the associated JDBC driver. Each of these

Each language has a respective driver stored in

a jar file.

44

Figure 25: OracleSQL Driver downloads page. Note: the first two .JAR files are typically the correct downloads for an

introduction course.

Figure 26: MySQL Driver downloads page.

Figure 27: Postgres Driver downloads page. Note: the orange 'Download' buttons will download the .JAR file.

4.10.3 Registering the Driver

Each database system will then require the driver to be manually registered with the Driver

Manager via the Class.forName function. This line will look different for each database system,

though all refer to their driver.

45

Figure 28: Java code for locating the Oracle Driver.

Figure 29: Java code for locating MySQL Driver.

Figure 30: Java code for locating Postgres Driver.

4.10.4 Establishing a Connection

All database systems will then initialize a connection object to access the databases through.

Each system uses the connection object the same way, though the way in which it is initialized

takes a different syntax for each.

Figure 31: Java code to open an Oracle driver connection. Note: <Driver>, <Host Name>, <Port>, <SID>, <User ID>, and

<Password> should be replaced with the type of driver, the host name, the port number, the SID of the SQL server, the user ID,

and the password respectively.

Figure 32: Java code to open a MySQL driver connection. Note: <Host Name>, <Port>, <Database Name>, <User ID>, and

<Password> should be replaced with the host name, the port number, the database name, the user ID, and the password

respectively.

Figure 33: Java code to open a Postgres driver connection. Note: <Host Name>, <Port>, <Database Name>, <User ID>, and

<Password> should be replaced with the host name, the port number, the database name, the user ID, and the password

respectively.

4.10.5 Analysis and Discussion

As seen in the differences described above, when comparing the aspect of Java Database

Connectivity (JDBC) across the Oracle, Postgres, and MySQL database systems, the main

46

differences lie in their processes required to successfully connect to the database through Java. To

begin, each system has its own version of the file required to get the JDBC driver required to be

able to successfully connect to the database. The other additional differences were that across all

three systems, the actual drivers required for the connection themselves also had different names,

and that the connection strings required for the connection were formatted differently. Despite

these differences, apart from the fact that different users may format database queries differently

in Java, the Java code required to iterate through, retrieve, and update data within the database is

the exact same across all three systems.

4.11 Connecting to the database using Python

4.11.1 Schema Used

Figure 34: Schema used for the Python Connection section.

What we had to do for this part of the project was to create a python program that would

allow users to use the Oracle, MySQL, and Postgres database systems to access information

regarding specific hospital patients and employees and allow the employees to update their

password. The libraries, though different, are used with overwhelming similar syntax, The biggest

differences noticed were that all three systems had differences regarding the specific processes they

require to successfully establish a connection to the database through Python, and how each library

has different syntax to code up SQL prepared statements.

4.11.2 Oracle

The first step to successfully establish a connection to the database was to install and import

the library to connect Python to the Oracle database:

Figure 35: Terminal command to install the library that allows Python to connect to Oracle.

Figure 36: Line of code in a Python project to import the cx_Oracle library.

47

The . The terminal

command to install this library is

In addition to this difference, this library also requires users to download the Oracle Instant

Client basic package:

Figure 37:.ZIP format available for the Oracle Instant Client.

The name of this file may vary depending on the operating system used, but for all

operating systems, the package can be found on the official Oracle website. Once the package has

been installed, users must give the cx_Oracle library access to all the contents inside it.

Figure 38: Python code to initialize the Oracle client. Note: '/path/to' should be replaced with the appropriate file location of the

Oracle Instant Client.

The line of code to do this consists of a call to init_oracle_client()

method, with the library directory full pathname of inside the

Oracle Instant Client Basic Package formatted as a string.

Another difference in the Python code used to finish establishing the connection to the

Oracle database can be found in nnect() method

which makes the method successfully connect to the database:

Figure 39: Python code that sets up an Oracle connection with a user ID, password, and a DNS. Note: The DNS should be

formatted as "<host name>:<port>/<SID>".

The first two parameters of this method are username and password that they

use to be able to connect to the Oracle Server. The final parameter is a data source name assigned

to a string consisting of the machine that the user is using to host their Oracle server, the port that

they are using, and the service ID that they are using.

48

In terms of differences regarding the Python code required to iterate through, retrieve, and

update data within the database, the cx_Oracle library has its own way of handling prepared

statements.

Figure 40: Python code that creates a prepared statement which allows SQL queries to be executed in Oracle. Note: the ‘:1’ and

‘:2’ are placeholders for the <Insert Password> and <Insert Employee ID>.

In the cx_Oracle library, before executing any SQL statement, users must declare a cursor

variable using the connection.cursor() method. Once they have the cursor, they can use it to

execute SQL statements. For prepared statements, placeholders are denoted

sequential number. To properly substitute these placeholders during execution, the user can pass

in a list of variables, enclosed by square brackets, as the second argument to the execute() method

of the cursor. The order of these variables in the list corresponds to the order of the placeholders

in the query. For instance, :1 will be replaced by the first value in the list, :2 by the second, and so

forth.

4.11.3 MySQL

The first step used to successfully establish a connection to the database was to install and

import the library to connect Python to the MySQL database:

Figure 41: Terminal command to install the library that allows Python to connect to MySQL.

Figure 42: Line of code in a Python project to import the mysql.connector library.

The library to connect Python to the MySQL mysql.connector

mysql.connector

code required to mysql.connector

Another difference in the Python code required to finish establishing the connection to the

MySQL database can be found in the parameters used inside s connect()

method required to make the method successfully connect to the database:

49

Figure 43: Python code that sets up a MySQL connection with a user ID, password, host, port, and database name.

The first two parameters of

use to be able to connect to the MySQL Server. For the remaining parameters, the user has to pass

in the machine that they are using to host their MySQL server, the port that they are using, and the

name of the database that they are using.

In terms of differences regarding the Python code used to iterate through, retrieve, and

update data within the database, the mysql.connector library handles prepared statements

differently than the how cx_Oracle library does.

Figure 44: Python code that creates a prepared statement which allows SQL queries to be executed in MySQL. Note: the ‘%s’s

are placeholders for the <Insert Password> and <Insert Employee ID>.

Similar to the the cx_Oracle library, in the mysql.connector library, before executing any

SQL statement, users must declare a cursor variable using the connection.cursor() method. Once

they have the cursor, they can use it to execute SQL statements. However, for prepared statements

in this library, placeholders are denoted by %s , irrespective of the datatype. To properly substitute

these placeholders during execution, the user can pass in a tuple of variables, enclosed by

parentheses instead of square brackets, as the second argument to the execute() method of the

cursor. The order of these variables in the tuple should correspond to the order of the placeholders

in the query. For instance, the first %s will be replaced by the first value in the tuple, the second

%s by the next value, and so on.

4.11.4 Postgres

The first step to successfully establish a connection to the database was to install and import

the library to connect Python to the Postgres database:

50

Figure 45: Terminal command to install the library that allows Python to connect to Postgres.

Figure 46: Line of code in a Python project to import the psycopg2 library.

psycopg2 erminal

psycopg2 needed to use

psycopg2

Another difference in the Python code used to finish establishing the connection to the

MySQL database can be found in the parameters used inside psycopg2

required to make the method successfully connect to the database:

Figure 47: Python code that sets up a Postgres connection with a database name, host, and port.

The first two parameters used in this method are the name of the database and the machine

that the user is using to host their Postgres server. For the remaining parameter, the user must pass

in the port that they are using. When using the psycopg2 library to connect to the database through

python, the user is not required to enter the username and password that they normally need to

use to connect to the database.

In terms of differences regarding the Python code used to iterate through, retrieve, and

update data within the database, the psycopg2 library handles prepared statements differently than

how cx_Oracle library does.

Figure 48: Python code that creates a prepared statement which allows SQL queries to be executed in Postgres. Note: the ‘%s’s

are placeholders for the <Insert Password> and <Insert Employee ID>.

51

Similar to the cx_Oracle library, in the psycopg2 library, before executing any SQL

statement, users must declare a cursor variable using the connection.cursor() method. Once they

have the cursor, they can use it to execute SQL statements. However, for prepared statements in

this library, placeholders are denoted by %s , irrespective of the datatype. To properly substitute

these placeholders during execution, the user can pass in a tuple of variables, enclosed by

parentheses instead of square brackets, as the second argument to the execute() method of the

cursor. The order of these variables in the tuple should correspond to the order of the placeholders

in the query. For instance, the first %s will be replaced by the first value in the tuple, the second

%s by the next value, and so on.

4.11.5 Analysis and Discussion

As seen in the differences described above, when comparing the aspect of connecting to the

database using Python across the Oracle, Postgres, and MySQL database systems, the main

differences lie in their processes required to successfully connect to the database through Java. To

begin, each system had its own library used to connect to the database that needed to be installed

and imported into Python. Oracle requires a bit more installations as even with the cx_Oracle

Python library, the user still needs to download the basic Oracle Instant Client package and give

Python access to that package to be able to successfully connect to the database. In addition to

these differences, used to connect to the database use a

connect () method to do so, they do not all require the same parameters to be passed into the

method. A key example that demonstrates this is while the cx_Oracle and mysql.connector Python

libraries require authentication from the user to connect to the database, the psycopg2 Python

library used to connect to the Postgres database does not. In terms of the Python code used to

iterate through, retrieve, and update data within the database, the only differences found were with

nection libraries handled prepared statements. While

all three libraries require the user to declare a cursor variable using the connection.cursor() method

to execute prepared statements, the way placeholders are denoted is not the same across the three

libraries. While they are denoted by a : followed by a sequential number in the cx_Oracle library,

they are denoted by a %s , irrespective of the datatype, in the psycopg2 and the mysql.connector

libraries. The second difference related to the way libraries

handle prepared statements is the way to substitute the placeholders in the statements. In the

cx_Oracle library, the placeholders are sequentially substituted by variables inside a list enclosed

by square brackets while they are sequentially substituted by variables inside a tuple enclosed by

parentheses.

52

5 Future Works
In the future, this research could be expanded in a variety of ways. There are a few

categories that may be relevant to introductory courses that were not discussed within this

research, such as some more intricate elements of nested querying and the efficacy of error

descriptions. Additionally, because this research only focuses on courses that teach the very

fundamentals of relational databases, similar studies could be performed on more technical

courses, or simply more advanced database courses. There are several topics that are not discussed

in this paper that would be incredibly useful for professors hoping to teach a higher-level course.

Therefore, conducting research on these topics would be crucial to help guide them towards the

right database system to use for such courses. Furthermore, it would be beneficial to research

alternative programming languages in addition to Java and Python as a means of connecting to

 Many languages have their own methods for

connecting to these servers natively or through third-party libraries and package managers. An

example of this would be how other popular languages such as C and its extension C++ use ODBC

(Open Database Connectivity) as a standard application programming interface (API) in order to

connect to databases. This would be beneficial for introductory courses to be aware of as students

may have past knowledge of a variety of languages and not necessarily all the same ones.

53

6 Conclusion
From analyzing all the results collected, it is evident that the database systems Oracle,

Postgres, and MySQL each have their own strengths and weaknesses in terms of how suitable they

are for students in an introductory database course.

Category Oracle Postgres MySQL

Installation and Setup Difficult Moderate Moderate

Proprietary IDEs Simple Moderate Simple

Datatypes Simple Complex Complex

Table Management Easy Easy Easy

Data Manipulation Easy Easy Easy

Query Simplicity Easy Easy Easy

Advanced Functionality Easy Moderate Moderate

Java/Python Connectivity Easy Easy Easy

Figure 49: Summary of comparisons across Oracle, Postgres, and MySQL

Figure 49 surmises the differences and comparisons we located throughout our project. For

instance, when considering the aspects of installation and setup, MySQL and Postgres may be more

adequate choices for an introductory database course than Oracle due to their less complex

processes required to do so. The same can be said when considering the aspect of flexibility in

terms of the SQL code for each of these systems. This is because the SQL dialect of MySQL and

PostgreSQL supports certain table commands and constraints that are not directly supported in

OracleSQL, giving them more flexibility. On the other hand, when considering the aspect of the

s, Postgres newer

users. The main reason for this is because while pgAdmin 4 supports advanced features that might

be very useful for professional database users, it can be quite overwhelming and ambiguous for

students in an introductory database course. However, if a third-party IDE such as Datagrip or

DBeaver is used instead, then this might not be an issue in deciding which database system to use.

With respect to aspects of advanced functionality such as triggers, procedures, and functions,

OracleSQL can be considered the most suitable system to use for students in an introductory

database. OracleSQL has the most intuitive coding practices and syntaxes, while MySQL and

PostgreSQL have more difficult syntactical requirements which could confuse new users.

 The varying features and intricacies of Oracle, Postgres, and MySQL illustrate that each

system brings its own set of advantages and challenges for use in an introductory database course.

Because of this, the most suitable database system to use for an introductory database course largely

depends on the unique requirements, learning outcomes, and pedagogical approach.

Therefore, it is up to the course instructor to select the system that aligns best with the instructional

goals and structure of their course.

54

7 Works Cited
Aggarwal, D., Winstead, C., & Tufte, K. (2020). Leveraging Industry Benchmarks to Teach

Database Concepts. In Proceedings of the 51st ACM Technical Symposium on Computer

Science Education 1410–1410. https://doi.org/10.1145/3328778.3372562

Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., & Ahmad, I. (2013). Cloud Computing Pricing

Models: A Survey. International Journal of Grid and Distributed Computing, 6(5), 93–106.

https://doi.org/10.14257/ijgdc.2013.6.5.09

Amazon Web Services. (n.d.). Open Source Databases - Amazon Web Services. Retrieved

September 3, 2023, from https://aws.amazon.com/products/databases/open-source-

databases/

Amazon Web Services (2019). Amazon RDS for PostgreSQL – Amazon Web Services

(AWS). Amazon Web Services, Inc. https://aws.amazon.com/rds/postgresql/

Bi, Y., & Beidler, J. (2008). Teaching database systems with web applications team projects.

Journal of Computing Sciences in Colleges, 23(3), 82-88. https://dl-acm-org.ezpv7-web-p-

u01.wpi.edu/doi/pdf/10.5555/1295109.1295130

Center for Project Based Learning» Project-Based Learning at WPI. (n.d.). Wp.wpi.edu.

Retrieved September 28, 2023, from https://wp.wpi.edu/projectbasedlearning/proven-

pedagogy/project-based-learning-at-

wpi/#:~:text=Since%201970%2C%20project%2Dbased%20learning

Ceri, S., Cochrane, R. J., Widom, J., & Di Milano, P. (n.d.). Practical Applications of Triggers

and Constraints: Successes and Lingering Issues.

Codd, E. F. (1982). Relational database: a practical foundation for productivity. Commun. ACM,

25(2), 109–117. https://doi.org/10.1145/358396.358400

DB-Engines. (2019). DB-Engines Ranking. DB-Engines. https://db-engines.com/en/ranking

https://wp.wpi.edu/projectbasedlearning/proven-pedagogy/project-based-learning-at-wpi/#:~:text=Since%201970%2C%20project%2Dbased%20learning
https://wp.wpi.edu/projectbasedlearning/proven-pedagogy/project-based-learning-at-wpi/#:~:text=Since%201970%2C%20project%2Dbased%20learning
https://wp.wpi.edu/projectbasedlearning/proven-pedagogy/project-based-learning-at-wpi/#:~:text=Since%201970%2C%20project%2Dbased%20learning

55

DB-Engines. (February 1, 2023). Ranking of the most popular database management systems

worldwide, as of February 2023 [Graph]. In Statista. Retrieved September 04, 2023, from

https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-

management-system

DB-Fiddle. (n.d.). Db-fiddle.com. https://www.db-fiddle.com/

DB<>Fiddle. (n.d.). DB<>Fiddle. https://dbfiddle.uk

Deng, Y., Frankl, P., & Wang, J. (2004). Testing web database applications. ACM SIGSOFT

Software Engineering Notes, 29(5), 1-10. https://dl-acm-org.ezpv7-web-p-

u01.wpi.edu/doi/10.1145/1022494.1022528

Dolezel, D., & McLeod, A. (2021). Big-Data Skills: Bridging the Data Science Theory-Practice

Gap in Healthcare. Perspectives in Health Information Management, 18(Winter).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883353/

Domdouzis, K., Lake, P., & Crowther, P. (2021). Hierarchical Databases. In Concise Guide to

Databases: A Practical Introduction (pp. 205-212). Cham: Springer International Publishing.

https://link.springer.com/chapter/10.1007/978-3-030-42224-0_9

DuBois, P. (2009). Writing MySQL Programs Using C. MySQL, 4th Ed., 359–434.

https://books.google.com/books?hl=en&lr=&id=JgFTUsIC0bUC&oi=fnd&pg=PT13&dq=

%22Writing+MySQL+Programs+Using+C%22&ots=Dt_JtMLwHm&sig=NAbjkEdFl1zJ-

zmDguIa1TPkOP4#v=onepage&q=%22Writing%20MySQL%20Programs%20Using%20C

%22&f=false

E. F. Codd. 1982. Relational database: a practical foundation for productivity. Commun. ACM

25, 2 (Feb 1982), 109–117. https://doi.org/10.1145/358396.358400

Eder, J. (1992). Logic and Databases. 95–103. https://doi.org/10.1007/3-540-55681-8_32

https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-system
https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-system
https://doi.org/10.1145/358396.358400

56

Fadlallah, H. (2021, August 9). Popular free SQL online compilers. SQL Shack - Articles about

Database Auditing, Server Performance, Data Recovery, and More.

https://www.sqlshack.com/popular-free-sql-online-compilers/

Feasel, J. (2012). SQL Fiddle | A tool for easy online testing and sharing of database problems

and their solutions. SQL Fiddle. http://www.sqlfiddle.com/about.html

Fekete, A. (2005, June). Teaching transaction management with SQL examples. In Proceedings

of the 10th annual SIGCSE conference on Innovation and technology in computer science

education (pp. 163-167). https://dl-acm-org.ezpv7-web-p-

u01.wpi.edu/doi/pdf/10.1145/1384271.1384382

Fekete, A. D., & Röhm, U. (2022). Teaching about Data and Databases: Why, What, How?.

ACM SIGMOD Record, 51(2), 52-60. https://dl-acm-org.ezpv7-web-p-

u01.wpi.edu/doi/pdf/10.1145/3552490.3552504

Firth, J., Torous, J., Stubbs, B., Firth, J. A., Steiner, G. Z., Smith, L., ... & Sarris, J. (2019). The

“online brain”: how the Internet may be changing our cognition. World Psychiatry, 18(2),

119-129. https://onlinelibrary.wiley.com/doi/full/10.1002/wps.20617

Gallini, N. I., Denisenko, A. A., Kazak, A. N., Linnik, I. I., Chetyrbok, P. V., & Sergeeva, E. A.

(2022, January). Teaching the Development of Information Web Portals Using ASP. NET

Technology. In 2022 Conference of Russian Young Researchers in Electrical and

Electronic Engineering (ElConRus) (pp. 637-640). IEEE.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9755667

Haxhiu, V. (2018). Decision making based on data analyses using data warehouses. International

Journal of Business and Technology, 6(3), 1-6.

https://doi.org/10.33107/IJBTE.2018.6.3.04.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9755667

57

Hidalgo, E. S. (2019). Adapting the scrum framework for agile project management in science:

case study of a distributed research initiative. Heliyon, 5(3).

https://doi.org/10.1016/J.HELIYON.2019.E01447

Huang, C. Y. (2019). Integrative curriculum for teaching databases. Journal of Computing

Sciences in Colleges, 34(3), 131-131. https://dl-acm-org.ezpv7-web-p-

u01.wpi.edu/doi/pdf/10.5555/3306465.3306487

Jiang, L., & Nandi, A. (2015). Designing interactive query interfaces to teach database systems

in the classroom. Proceedings of the 33rd Annual ACM Conference Extended Abstracts on

Human Factors in Computing Systems (pp. 1479-1482).

https://doi.org/10.1145/2702613.2732900

Koulouri, T., Lauria, S., & Macredie, R. D. (2014). Teaching Introductory Programming. ACM

Transactions on Computing Education (TOCE), 14(4). https://doi.org/10.1145/2662412

Lerner, R. M. (2007). Open-source databases, part ii: Postgresql. Linux J, 157, 16.

https://www.ecb.torontomu.ca/~courses/coe518/LinuxJournal/elj2007-157-

PostgreSQL2.pdf

Maiorana, F. (2014, April). Teaching Web Programming. In Proceedings of the 6th International

Conference on Computer Supported Education (Vol. 2, pp. 49-56).

https://pdfs.semanticscholar.org/c789/56a9682473582fedfa769b763a33f3e03247.pdf

Melton, J. (1996). SQL Language Summary. ACM Computing Surveys, 28(1).

https://dl.acm.org/doi/pdf/10.1145/234313.234374

Microsoft (n.d.) Azure Database for PostgreSQL | Microsoft Azure. Azure.microsoft.com.

https://azure.microsoft.com/en-us/products/postgresql

https://www.ecb.torontomu.ca/~courses/coe518/LinuxJournal/elj2007-157-PostgreSQL2.pdf
https://www.ecb.torontomu.ca/~courses/coe518/LinuxJournal/elj2007-157-PostgreSQL2.pdf

58

Mior, M. J. (2023, June). Relational Playground: Teaching the Duality of Relational Algebra and

SQL. In Proceedings of the 2nd International Workshop on Data Systems Education:

Bridging education practice with education research (pp. 56-58). https://dl-acm-org.ezpv7-

web-p-u01.wpi.edu/doi/abs/10.1145/3596673.3596978

MongoDB. (n.d.-a). What is an Object-Oriented Database? MongoDB.

https://www.mongodb.com/databases/what-is-an-object-oriented-database

MongoDB (n.d.-b) What Is A JSON Database? | All You Need To Know. MongoDB.

https://www.mongodb.com/databases/json-

database#:~:text=JSON%20databases%20are%20part%20of

MongoDB (n.d.-c) What Is A Database Application? MongoDB.

https://www.mongodb.com/basics/database-application

MongoDB. (2019). NoSQL Databases Explained. MongoDB. https://www.mongodb.com/nosql-

explained

Motro, A. (1993, June). What to teach about databases. In Proceedings of the 1993 ACM

SIGMOD international conference on Management of data (p. 420).

https://dl.acm.org/doi/pdf/10.1145/170035.170108

MySQL. (n.d.-a). MySQL :: MySQL Enterprise Edition. Retrieved August 16, 2023, from

https://www.mysql.com/products/enterprise/

MySQL. (n.d.-b). What Is MySQL? | Oracle. Retrieved August 16, 2023, from

https://www.oracle.com/mysql/what-is-mysql/.

MySQL (2019). Oracle MySQL Cloud Service. Mysql.com. https://www.mysql.com/cloud/

https://www.mongodb.com/databases/what-is-an-object-oriented-database
https://www.mongodb.com/databases/json-database#:~:text=JSON%20databases%20are%20part%20of
https://www.mongodb.com/databases/json-database#:~:text=JSON%20databases%20are%20part%20of
https://www.mongodb.com/basics/database-application
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
https://www.mysql.com/cloud/

59

Nandi, B. K. (2021). Construct a customer database from PDF bank statements using Python

programming and Microsoft SQL (Doctoral dissertation, Brac University).

17366002_CSE.pdf

Oracle. (n.d.-a). Cloud Infrastructure | Oracle. Retrieved August 16, 2023, from

https://www.oracle.com/cloud/

Oracle. (n.d.-b). Database Software Downloads | Oracle. Retrieved August 16, 2023, from

https://www.oracle.com/database/technologies/oracle-database-software-downloads.html

Oracle. (n.d.-c). Oracle Database 21c. Oracle Help Center

https://docs.oracle.com/en/database/oracle/oracle-database/21/

Oracle. (2020). What is OLTP? Oracle.com. https://www.oracle.com/database/what-is-oltp/

Oracle. (2022). What is a database? Www.oracle.com. https://www.oracle.com/database/what-

is-database/

Oracle. (2023). What is a relational database? Oracle.com.

https://www.oracle.com/database/what-is-a-relational-database/

Özsu, M. T., & Valduriez, P. (1999). Principles of distributed database systems (Vol. 2).

Englewood Cliffs: Prentice Hall. https://link.springer.com/content/pdf/10.1007/978-3-030-

26253-2.pdf

pgAdmin. (n.d.-a). pgAdmin - PostgreSQL Tools. Retrieved August 17, 2023, from

https://www.pgadmin.org/

pgAdmin. (n.d.-b). pgAdmin Download. Retrieved August 17, 2023, from

https://www.pgadmin.org/download/

Płuciennik, E., & Zgorzałek, K. (2017). The multi-model databases–a review. In Beyond

Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and

https://dspace.bracu.ac.bd/xmlui/bitstream/handle/10361/15617/17366002_CSE.pdf?sequence=1&isAllowed=y
https://www.oracle.com/database/what-is-oltp/
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-a-relational-database/

60

Knowledge Representation: 13th International Conference, BDAS 2017, Ustroń, Poland,

May 30-June 2, 2017, Proceedings 13 (pp. 141-152). Springer International Publishing.

https://link.springer.com/chapter/10.1007/978-3-319-58274-0_12

PostgreSQL. (n.d.-a). PostgreSQL: About. Retrieved August 17, 2023, from

https://www.postgresql.org/about/

PostgreSQL. (n.d.-b). PostgreSQL: Downloads. Retrieved August 17, 2023, from

https://www.postgresql.org/download/

PostgreSQL. (n.d.-c). PostgreSQL: The world’s most advanced open source database. Retrieved

August 17, 2023, from https://www.postgresql.org/

PostgreSQL. (n.d.-d). PostgreSQL: Version History. Retrieved August 17, 2023, from

https://www.postgresql.org/ftp/source/

Project-Based Learning at WPI | PBL in Higher Education. (n.d.). Www.wpi.edu.

https://www.wpi.edu/project-based-learning

Qiu, T., Feng, M., Lu, S., Li, Z., Wu, Y., Zoltowski, C. B., & Lu, Y. H. (2017). Online

Programming System for Code Analysis and Activity Tracking. ASEE Annual Conference

and Exposition, Conference Proceedings, 2017-June. https://doi.org/10.18260/1-2--28722

Rilett, D., & Russo, J. P. (2013). Using Amazon web services to teach web-enabled database

concepts. Journal of Computing Sciences in Colleges, 28(6), 134-135. https://dl-acm-

org.ezpv7-web-p-u01.wpi.edu/doi/pdf/10.5555/2460156.2460181

Sarkan, H. M., Ahmad, T. P. S., & Bakar, A. A. (2011). Using JIRA and redmine in requirement

development for Agile methodology. 2011 5th Malaysian Conference in Software

Engineering, MySEC 2011, 408–413. https://doi.org/10.1109/MYSEC.2011.6140707

https://www.postgresql.org/ftp/source/
https://www.wpi.edu/project-based-learning

61

Sasaki, B. M., Chao, J., & Howard, R. (2018). Graph databases for beginners. Neo4j.

https://go.neo4j.com/rs/710-RRC-335/images/Graph_Databases_for_Beginners_v4.pdf

Srivastava, A., Bhardwaj, S., & Saraswat, S. (2017). SCRUM model for agile methodology.

Proceeding - IEEE International Conference on Computing, Communication and

Automation, ICCCA 2017, 2017-January, 864–869.

https://doi.org/10.1109/CCAA.2017.8229928

Udoh, E. (2006). Teaching Database in an Integrated Oracle Environment. In Working group

reports on ITiCSE on Innovation and technology in computer science education (pp. 71-74).

https://dl-acm-org.ezpv7-web-p-u01.wpi.edu/doi/pdf/10.1145/1189215.1189174

Wagner, P. J., Shoop, E., & Carlis, J. V. (January 2003). Using scientific data to teach a database

systems course. In Proceedings of the 34th SIGCSE technical symposium on Computer

science education (pp. 224-228). https://dl-acm-org.ezpv7-web-p-

u01.wpi.edu/doi/pdf/10.1145/611892.611975

Wang, M. (2003). Teaching Case: E-Business Application Development with Java Technology

and Oracle: The Fortune Invest Inc. Case. Journal of Information Systems Education, 14(3),

293. http://jise.org/Volume14/n3/JISEv14n3p293.pdf

Zayour, I., & Hajjdiab, H. (2013). How Much Integrated Development Environments (IDEs)

Improve Productivity? Journal of Software, 8(10), 2425-2431.

https://doi.org/10.4304/jsw.8.10.2425-2431

http://jise.org/Volume14/n3/JISEv14n3p293.pdf

62

8 Appendices
8.1 Appendix A: Oracle Installation for macOS through Docker

63

64

65

66

8.2 Appendix B: Using Oracle on macOS through Docker

67

68

8.3 Appendix C: Oracle Installation for Windows

69

70

71

72

8.4 Appendix D: Using Oracle on Windows

73

74

75

76

8.5 Appendix E: Postgres Installation for macOS

77

78

8.6 Appendix F: Using Postgres on macOS

79

80

8.7 Appendix G: Postgres Installation for Windows

81

82

83

84

8.8 Appendix H: Using Postgres on Windows

85

86

87

88

8.9 Appendix I: MySQL Installation for MacOS

89

90

8.10 Appendix J: Using MySQL on MacOS

91

92

93

94

8.11 Appendix K: MySQL Installation for Windows

95

96

97

98

99

8.12 Appendix L: Using MySQL on Windows

100

101

102

103

	Abstract
	Acknowledgments
	Table of Contents
	Table of Figures
	1 Introduction
	2 Background Research
	2.1 What is a database?
	2.2 The importance of teaching about databases
	2.3 Pedagogical approaches to teaching Database Concepts
	2.4 Why Use a Relational Database?
	2.5 Background on Oracle
	2.6 Background on MySQL
	2.7 Background on Postgres
	2.8 Free web-based SQL editors for students and instructors

	3 Methodology
	3.1 Project Methodology
	3.2 Comparative Study
	3.2.1 General Study
	3.2.1.1 Installation Complexity
	3.2.1.2 Setup Complexity
	3.2.1.3 Proprietary Integrated Development Environments (IDEs)
	3.2.1.4 Cloud Pricing
	3.2.1.5 Datatypes

	3.2.2 Academic Study
	3.2.2.1 Table Management
	3.2.2.2 Data Manipulation
	3.2.2.3 Query Simplicity
	3.2.2.4 Advanced Functionality
	3.2.2.5 Java Database Connectivity (JDBC)
	3.2.2.6 Python Database Connectivity

	4 Results and Discussion
	4.1 Installation Complexity
	4.1.1 MySQL and Postgres
	4.1.2 Oracle
	4.1.3 Analysis and Discussion

	4.2 Setup Complexity
	4.2.1 Analysis and Discussion

	4.3 Proprietary IDEs
	4.3.1 Oracle
	4.3.2 MySQL
	4.3.3 Postgres
	4.3.4 Analysis and Discussion

	4.4 Cloud Pricing
	4.4.1 Oracle
	4.4.2 MySQL
	4.4.3 Postgres
	4.4.4 Analysis and Discussion

	4.5 Datatypes
	4.5.1 Numerical Datatypes
	4.5.2 Date and Time Datatypes
	4.5.3 String Datatypes
	4.5.4 Other Notable Datatypes

	4.6 Table Management
	4.6.1 Schema Used
	4.6.2 Oracle
	4.6.3 MySQL and Postgres
	4.6.4 Analysis and Discussion

	4.7 Data Manipulation
	4.8 Query Simplicity
	4.9 Advanced Functionality
	4.9.1 Views
	4.9.2 Procedures
	4.9.2.1 Schema Used
	4.9.2.2 Oracle
	4.9.2.3 Postgres
	4.9.2.4 MySQL
	4.9.2.5 Analysis and Discussion

	4.9.3 Functions
	4.9.3.1 Schema Used
	4.9.3.2 Oracle
	4.9.3.3 Postgres
	4.9.3.4 MySQL
	4.9.3.5 Analysis and Discussion

	4.9.4 Triggers
	4.9.4.1 Schema Used
	4.9.4.2 Oracle
	4.9.4.3 Postgres
	4.9.4.4 MySQL
	4.9.4.5 Analysis and Discussion

	4.9.5 Advanced Functionality Analysis and Discussion

	4.10 Java Database Connectivity (JDBC)
	4.10.1 Schema Used
	4.10.2 Driver Installation
	4.10.3 Registering the Driver
	4.10.4 Establishing a Connection
	4.10.5 Analysis and Discussion

	4.11 Connecting to the database using Python
	4.11.1 Schema Used
	4.11.2 Oracle
	4.11.3 MySQL
	4.11.4 Postgres
	4.11.5 Analysis and Discussion

	5 Future Works
	6 Conclusion
	7 Works Cited
	8 Appendices
	8.1 Appendix A: Oracle Installation for macOS through Docker
	8.2 Appendix B: Using Oracle on macOS through Docker
	8.3 Appendix C: Oracle Installation for Windows
	8.4 Appendix D: Using Oracle on Windows
	8.5 Appendix E: Postgres Installation for macOS
	8.6 Appendix F: Using Postgres on macOS
	8.7 Appendix G: Postgres Installation for Windows
	8.8 Appendix H: Using Postgres on Windows
	8.9 Appendix I: MySQL Installation for MacOS
	8.10 Appendix J: Using MySQL on MacOS
	8.11 Appendix K: MySQL Installation for Windows
	8.12 Appendix L: Using MySQL on Windows

